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Objectives

In this chapter we continue our study of comparisons of two independent
samples by introducing hypothesis testing. We will

explore how randomization can be used to form the
basis of a statistical inference.

demonstrate how to a conduct a two-sample ¢ test
to compare sample means and explain how this test
relates to the confidence interval for the difference
of two means.

discuss the interpretation of P-values.

take a closer look at how confounding and spurious
association can limit the utility of a study.

compare causal versus associative inferences and
their relationships to experiments and observational

discuss the concepts of significance level, effect size,
Type I and II errors, and power.

distinguish between directional and nondirectional
tests and examine how the P-values of these tests
compare.

consider the conditions under which the use of a ¢
test is valid.

show how to compare distributions using the
Wilcoxon-Mann-Whitney test.

studies.

Example
7.1.1

7.1 Hypothesis Testing: The Randomization Test

Consider taking a sample from a population and then randomly dividing the sample
into two parts. We would expect the two parts of the sample to look similar, but not
exactly alike. Now suppose that we have samples from two populations. If the two
samples look quite similar to each other, we might infer that the two populations are
identical; if the samples look quite different, we would infer that the populations dif-
fer. The question is, “How different do two samples have to be in order for us to
infer that the populations that generated them are actually different?”

One way to approach this question is to compare the two sample means and to
see how much they differ in comparison to the amount of difference we would
expect to see due to chance.* The randomization test gives us a way to measure the
variability in the difference of two sample means.

Flexibility A researcher studied the flexibility of each of seven women, four of
whom were in an aerobics class and three of whom were dancers. One measure she
recorded was the “trunk flexion” —how far forward each of the women could

*One could compare the two sample medians rather than the means. We compare means so that we have a
process similar to the ¢ test, which is introduced in the next section and is based on means.
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Table 7.1.1

Aerobics Dance
38 48
45 59
58 61
64
mean 51.25 56.00
Example
7.1.2
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stretch while seated on the floor.* The measures (in centimeters) are shown in
Table 7.1.1.1

Do the data provide evidence that the flexibility is associated with being a
dancer?

If being a dancer has no effect on flexibility, then one could argue that the seven
data points in the study came from a common population: Some women have
greater trunk flexion than others, but this has nothing to do with being a dancer.

Another way of saying this is

Claim: The seven trunk flexion measures came from a single population; the
labels “aerobics” and “dance” are arbitrary and have nothing to do with
flexibility (as measured by trunk flexion). [

If the claim stated in Example 7.1.1 is true, then any rearrangement of the seven
observations into two groups, with four “aerobics” and three “dance” women, is as
likely as any other rearrangement. Indeed, we could imagine writing the seven
observations onto seven cards, shuffling the cards, and then drawing four of them to
be the observations for the “aerobics” group, with the other three being the observa-
tions for the “dance” group.

Flexibility There are 35 possible ways to divide the trunk flexion measures of
the seven observations into two groups, of sizes 4 and 3. Table 7.1.2 lists each of the
35 possibilities, along with the difference in sample means for each. (We report
the means to three decimal places, since we will be using these values in future
calculations.) The two samples obtained in the study are listed first, followed by the
other 34 ways that the samples might have turned out.

Table 7.1.2

Sample 1 Sample 2 Mean of Mean of Difference
(“aerobics™) (“dance”) sample 1 sample 2 in means
38 45 58 64 48 59 o1 51.25 56.00 -4.75
38 45 58 48 64 59 61 47.25 61.33 —14.08
38 45 58 59 64 48 61 50.00 57.67 -17.67
38 45 58 61 64 48 59 50.50 57.00 —6.50
38 45 64 48 58 59 61 48.75 59.33 —10.58
38 45 64 59 58 48 61 51.50 55.67 —4.17
38 45 64 61 58 48 59 52.00 55.00 -3.00
38 45 48 59 58 64 61 47.50 61.00 —13.50
38 45 48 61 58 64 59 48.00 60.33 -12.33
38 45 59 61 58 64 48 50.75 56.67 —5.92
38 58 64 48 45 59 o1 52.00 55.00 —=3.00
38 58 64 59 45 48 61 54.75 51.33 3.42
38 58 64 61 45 48 59 55.25 50.67 4.58
38 58 48 59 45 64 61 50.75 56.67 —5.92
38 58 48 61 45 64 59 51.25 56.00 —4.75

(Continues on next page)

*These data are part of a larger study—we are working with a subset of the full study in order to simplify
matters.
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Table 7.1.2 (Continued)

Sample 1 Sample 2 Mean of Mean of Difference
(“aerobics™) (“dance”) sample 1 sample 2 in means
38 58 59 61 45 64 48 54.00 52.33 1.67
38 64 48 59 45 58 61 52.25 54.67 —2.42
38 64 48 61 45 58 59 52.75 54.00 -1.25
38 64 59 61 45 58 48 55.50 50.33 517
38 48 59 61 45 58 04 51.50 55.67 —4.17
45 58 64 48 38 59 61 53.75 52.67 1.08
45 58 64 59 38 48 61 56.50 49.00 7.50
45 58 64 61 38 48 59 57.00 48.33 8.67
45 58 48 59 38 64 61 52.50 54.33 -1.83
45 58 48 61 38 64 59 53.00 53.67 —0.67
45 58 59 61 38 64 48 55.75 50.00 5.75
45 64 48 59 38 58 61 54.00 52.33 1.67
45 64 48 61 38 58 59 54.50 51.67 2.83
45 64 59 61 38 58 48 57.25 48.00 9.25
45 48 59 61 38 58 04 53.25 53.33 —0.08
58 64 48 59 38 45 61 57.25 48.00 9.25
58 64 48 61 38 45 59 57.75 47.33 10.42
58 64 59 61 38 45 48 60.50 43.67 16.83
58 48 59 61 38 45 04 56.50 49.00 7.50
64 48 59 61 38 45 58 58.00 47.00 11.00

Figure 7.1.1 gives a visual display of these 35 possible values. The observed
result of —4.75, which is highlighted, falls not far from the middle of the distribution.

Suppose that the labels “aerobics” and “dance” are, in fact, arbitrary and have
nothing to do with trunk flexion. Then each of the 35 outcomes listed in Table 7.1.2,
and shown in Figure 7.1.1, is equally likely. This means that the differences, shown in
the last column of the table, are equally likely. Of the 35 differences, 20 of them are at
least as large in magnitude as the —4.75 obtained in the study; these are shown in bold
type in the table and filled in black or gray in the figure. Thus, if the claim is true (that
the labels “aerobics” and “dance” are arbitrary), there is a 20/35 chance of obtaining a
difference in sample means as large, in magnitude, as the difference that was observed.

The fraction 20/35 is approximately equal to 0.57, which is rather large. Thus, the
observed data are consistent with the claim that the labels “aerobics” and “dance”
are arbitrary and have nothing to do with flexibility. If the claim is true, we would
expect to see a difference in sample means of 4.75 or more over half of the time, just
due to chance alone. Therefore, this data provides little evidence that flexibility is

associated with dancing. m
o o0 ©o <] 08 g8 800000 08 00 000 8 08 00 ()
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Difference in means

Figure 7.1.1 Distribution of “Difference in means” values, with the observed result of
—4.75 colored blue, and values with observed results as or more extreme (in
magnitude) than 4.75 colored gray
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The process shown in Example 7.1.2 is called the randomization test.* In a random-
ization test one randomly divides the observed data into groups in order to see how
likely it is that the observed difference is to arise due to chance alone.

Note: In Section 7.2 we will introduce a procedure known as the ¢ test, which often
provides a good approximation to the randomization test. The value of 20/35 (0.57)
computed in Example 7.1.2 is called a P-value. (We have seen this term used earlier
for the decision making in the context of the Shapiro-Wilk test for normality in
Section 4.4. The general use of this term, and others, will be explained more fully in
Section 7.2.) For the data in Example 7.1.1 the ¢ test yields a P-value of 0.54. We can
think of the 0.54 P-value from the ¢ test as an approximation to the 0.57 P-value
found with the randomization test.

Larger Samples

When we are dealing with small samples, such as in Example 7.1.1, we can list all of
the possible outcomes from randomly assigning observations to groups. The follow-
ing example shows how to handle large samples, where no such listing is possible.

Leaf Area A plant physiologist investigated the effect of mechanical stress on the
growth of soybean plants. Individually potted seedlings were divided into two
groups. Those in the first group were stressed by shaking for 20 minutes twice daily,
while those in the second group (the control group) were not shaken. After 16 days
of growth the plants were harvested and total leaf area (cm?) was measured for each
plant. The data are given in Table 7.1.3 and are graphed in Figure 7.1.2.

Table 7.1.3 350 7 .
Control Stressed .
314 283 ; .
320 312 G 3007 . .
310 291 1 . .
340 259 z : .
299 216 S 250
268 201 )
345 267 .
271 326 200 — .
285 241 Cor:trol Strelssed
mean 305.8 266.2 .
Figure 7.1.2 Parallel dotplots of leaf areas

The mean for the stressed plants is lower than for the control plants and
Figure 7.1.2 provides some visual evidence of a difference between the two groups.
On the other hand, the dotplots overlap quite a bit. Perhaps stressing the seedlings
by shaking them has no actual effect on leaf area and the difference observed in this
experiment (305.8 — 266.2 = 39.6) was simply due to chance. That is, it might be

*Many people would call this a permutation test, since it involves listing all possible permutations of the data.
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that the “control” and “stressed” conditions have nothing to do with leaf area. If this
is the case, then we can think of the 18 seedlings as having come from one popula-
tion, with the division into “control” and “stressed” groups being arbitrary.

In Example 7.1.2 we could list all of the possible ways that the two groups could
have been formed. However, in the current example there are 48,620 possible ways
to select 9 of the 18 seedlings as the control group (and the other 9 as the stressed
group). Thus, it is not feasible to create a table similar to Table 7.1.2 and list all the
possibilities. What we can do, however, is to randomly sample from the 48,620 possi-
bilities. One way to do this would be to (1) write the 18 observations on each of 18
cards; (2) shuffle the cards; (3) randomly deal out 9 of them as the control group,
with the other 9 being the stress group; (4) calculate the difference in sample means;
(5) record whether the magnitude of the difference in sample means is at least 39.6;
(6) repeat steps (1)—(5) many times.

Consider the fraction of times that the magnitude of the difference in sample
means is at least as large as the value of 39.6 obtained in the experiment. This is a
measure of the evidence against the claim that “Stressing the seedlings by shaking
them has no actual effect on leaf area.”

Rather than use 18 cards, we could use a computer simulation to accomplish the
same thing. In one simulation with 1,000 trials there were only 36 trials that gave a
difference in sample means as large in magnitude as 39.6.* This indicates that the
observed difference of 39.6 is unlikely to arise by chance—the chance is only
3.6% —so we have evidence that stressing the plants has an effect. Indeed, it appears
that shaking the seedlings led to a reduction in average leaf area. ]

Note: The ¢ test procedure (to be introduced in Section 7.2) yields a P-value of
0.033, which is a good approximation to the 0.036 P-value given by the randomiza-
tion test.

Exercises 7.1.1-7.1.3

7.1.1 Suppose we have samples of five men and of five
women and have conducted a randomization test to com-
pare the sexes on the variable Y = pulse. Further, sup-
pose we have found that in 120 out of the 252 possible
outcomes under randomization the difference in means is
at least as large as the difference in the two observed
sample means. Does the randomization test provide evi-
dence that the sexes differ with regard to pulse? Justify
your answer using the randomization results.

7.1.2 In an investigation of the possible influence of di-
etary chromium on diabetic symptoms, some rats were
fed a low-chromium diet and others were fed a normal
diet. One response variable was activity of the liver
enzyme GITH, which was measured using a radioactively
labeled molecule. The accompanying table shows the

results, expressed as thousands of counts per minute per
gram of liver.? The sample means are 49.17 for the low-
chromium diet and 51.90 for the normal diet; thus the dif-
ference in sample means is —2.73. There are 10 possible
randomizations of the five observations into two groups,
of sizes three and two.

(a) Create a list of these 10 randomizations (one of
which is the original assignment of observations to
the two groups) and for each case calculate the
low-chromium diet mean minus the normal diet
mean.

(b) How many of the 10 randomizations yield a differ-
ence in sample means as far from zero as —2.73, the
difference in sample means for our observed
samples?

*In this instance, we could also use a computer to consider the difference in means for each of the 48,620 possi-
bilities and note how many of these yield differences larger than 39.6 in magnitude. However, as samples grow
larger, listing all possibilities can be computationally expensive (even with fast computers) and only marginally
more accurate than conducting simulations as we have described.



(c) Is there evidence that dietary chromium affects
GITH liver enzyme activity? Justify your answer
using the randomization results.

LOW-CHROMIUM DIET NORMAL DIET
42.3 53.1
51.5 50.7

53.7

7.1.3 The following table shows the number of bacteria
colonies present in each of several petri dishes, after E.
coli bacteria were added to the dishes and they were in-
cubated for 24 hours. The “soap” dishes contained a
solution prepared from ordinary soap; the “control” dish-
es contained a solution of sterile water. (These data are a
subset of the larger data set seen in Exercise 6.6.9.) The
sample means are 44 for the control group and 39.7 for
the soap group; thus the difference in sample means is

Section 7.2 Hypothesis Testing: The ¢ Test 223

4.3, with the control mean being larger, as would be
expected if the soap were effective. There are 20 possible
randomizations of the six observations into two groups,
each of size three.

(a) Create a list of these 20 randomizations (one of
which is the original assignment of observations to
the two groups) and for each case calculate the con-
trol mean minus the soap mean.

(b) How many of the 20 randomizations produce a dif-
ference in means at least as large as 4.3?

(c) Isthere evidence that the soap inhibits E. coli growth?
Justify your answer using the randomization results.

CONTROL SOAP
30 76
36 27
66 16

Example
7.2.1

7.2 Hypothesis Testing: The t Test

In Chapter 6 we saw that two means can be compared by using a confidence interval
for the difference (u; — p,). Now we will explore another approach to the compar-
ison of means: the procedure known as hypothesis testing. The general idea is to
formulate as a hypothesis the statement that w; and u, differ and then to see
whether the data provide sufficient evidence in support of that hypothesis.

The Null and Alternative Hypotheses

The hypothesis that u; and u, are not equal is called an alternative hypothesis (or a
research hypothesis) and is abbreviated H 4. It can be written as

Hpipy # o

Its antithesis is the null hypothesis,

Ho: py = po

which asserts that u; and u, are equal. A researcher would usually express these
hypotheses more informally, as in the following example.

Toluene and the Brain Abuse of substances containing toluene (for example, glue) can
produce various neurological symptoms. In an investigation of the mechanism of
these toxic effects, researchers measured the concentrations of various chemicals in
the brains of rats that had been exposed to a toluene-laden atmosphere, and also in
unexposed control rats. The concentrations of the brain chemical norepinephrine
(NE) in the medulla region of the brain, for six toluene-exposed rats and five con-
trol rats, are given in Table 7.2.1 and displayed in Figure 7.2.1.%

The observed mean NE in the toluene group (y; = 540.8 ng/gm) is substantially
higher than the mean in the control group (), = 444.2 ng/gm). One might ask
whether this observed difference indicates a real biological phenomenon—the
effect of toluene —or whether the truth might be that toluene has no effect and that
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Table 7.2.1 NE concentration (ng/gm) 650 7 .
Toluene Control 600 —
(Group 1) (Group 2) ’bg\b
543 535 2 550 :
523 385 g .
431 502 g 307
0]
635 412 £ 450
564 387 [;4 . .
549 400 .
n 6 5
¥ 540.8 4442 : :
B 66.1 69.6 Toluene Control
SE 27 31 Figure 7.2.1 Parallel dotplots of NE
concentration

the observed difference between y; and y, reflects only chance variation. Corre-
sponding hypotheses, informally stated, would be

H{: Toluene has no effect on NE concentration in rat medulla.
H’: Toluene has some effect on NE concentration in rat medulla. |

We denote the informal statements by different symbols (H and H rather than H,
and H,) because they make different assertions. In Example 7.2.1 the informal al-
ternative hypothesis makes a very strong claim —not only that there is a difference,
but that the difference is caused by toluene.*

A statistical test of hypothesis is a procedure for assessing the strength of evi-
dence present in the data in support of H 4. The data are considered to demonstrate
evidence for H, if any discrepancies from H, (the opposite of H,) could not be
readily attributed to chance (that is, to sampling error).

The t Statistic

We consider the problem of testing the null hypothesis
Hy:py = po
against the alternative hypothesis
Hp:py # o
Note that the null hypothesis says that the two population means are equal, which is
the same as saying that the difference between them is zero:
Hy:py = po<o> Hyrpp — pp =0
The alternative hypothesis asserts that the difference is not zero:
Hpp # pooHypy —pp 70

The  test is a standard method of choosing between these two hypotheses.To carry out
the ¢ test, the first step is to compute the test statistic, which for a ¢ test is defined as

0 —»m -0

t =
' SEw.-v,

*Of course, our statements of Hy and H}; are abbreviated. Complete statements would include all relevant
conditions of the experiment—adult male rats, toluene 1,000 ppm atmosphere for 8 hours, and so on. Our use of
abbreviated statements should not cause any confusion.
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Figure 7.2.2 Essence of
the ¢ test. (a) Data
compatible with H (and
thus a lack of significant
evidence for H ,); (b) data
incompatible with H, (and
thus significant evidence
for H 4).
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Note that we subtract zero from y; — y, because H states that w; — u, equals zero;

[TP% L}

writing “(y; — y,) — 0” reminds us of what we are testing. The subscript “s” on ¢,
serves as a reminder that this value is calculated from the data (“s” for “sample”).
The quantity ¢, is the test statistic for the ¢ test; that is, ¢, provides the data summary
that is the basis for the test procedure. Notice the structure of #;: It is a measure of
how far the difference between the sample means (y’s) is from the difference we
would expect to see if Hy were true (zero difference), expressed in relation to the SE
of the difference —the amount of variation we expect to see in differences of means

from random samples. We illustrate with an example.

Toluene and the Brain For the brain NE data of Example 7.2.1, the SE for (Y| — Y,) is

2 2
SEy,-v, = 666'1 + 695'6 = 41.195
and the value of #, is
. (540.8 — 444.2) — 0 _ 534
: 41.195 '
The t statistic shows that the difference between y; and y, is about 2.3 SEs from
zero, the difference we’d expect to see if toluene had no effect on NE. [

How shall we judge whether our data are sufficient evidence for H4? A com-
plete lack of evidence (perfect agreement with H,) would be expressed by sample
means that were identical and a resulting ¢ statistic equal to zero (¢, = 0). But, even
if the null hypothesis H, were true, we would not expect ¢, to be exactly zero; we
expect the sample means to differ from one another because of sampling variability
(measured via SEy, _v,)). Fortunately, we know what to expect regarding this sam-
pling variability; in fact, the chance difference in the Y’s is not likely to exceed a
couple of standard errors when the null hypothesis is true. To put this more precise-
ly, it can be shown mathematically that

If H, is true, then the sampling distribution of #; is well approximated by a
Student’s ¢ distribution with degrees of freedom given by formula (6.7.1).*

The preceding statement is true if certain conditions are met. Briefly: We require
independent random samples from normally distributed populations. These condi-
tions will be considered in detail in Section 7.9.

The essence of the ¢ test procedure is to identify where the observed value ¢
falls in the Student’s ¢ distribution, as indicated in Figure 7.2.2. If #; is near the cen-
ter, as in Figure 7.2.2(a), then the data are regarded as compatible with H, because
the observed difference between (Y| — Y,) and the null difference of zero can
readily be attributed to chance variation caused by sampling error. (H, predicts that
the sample means will be equal, since H, says that the population means are equal.)

*As we stated in Section 6.8, a conservative approximation to formula (6.7.1) is to use degrees of freedom given
by the smaller of n; — 1 and n, — 1.
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Figure 7.2.3 The two-
tailed P-value for the
t test

Example
7.2.3

Figure 7.2.4 The two-
tailed P-value for the
toluene data

If, on the other hand, ¢, falls in the far tail of the ¢ distribution, as in Figure 7.2.2(b),
then the data are regarded as evidence for H 4, because the observed deviation can-
not be readily explained as being due to chance variation. To put this another way, if
H is true, then it is unlikely that #; would fall in the far tails of the ¢ distribution.

The P-Value

To judge whether an observed value ¢, is “far” in the tail of the ¢ distribution, we
need a quantitative yardstick for locating ¢, within the distribution. This yardstick is
provided by the P-value, which can be defined (in the present context) as follows:

The P-value of the test is the area under Student’s ¢ curve in the double tails
beyond —¢; and +t¢,.

Thus, the P-value, which is sometimes abbreviated as simply “P,” is the shaded area
in Figure 7.2.3. Note that we have defined the P-value as the total area in both tails;
this is sometimes called the “two-tailed” P-value.

Shaded area = P-value

Toluene and the Brain For the brain NE data of Example 7.2.1, the value of ¢, is 2.34.
We can ask, “If H, were true so that one would expect Y| — Y, = 0, on average,
what is the probability that Y; — Y, would differ from zero by as many as
2.34 SEs?” The P-value answers this question. Formula (6.7.1) yields 8.47 degrees of
freedom for these data. Thus, the P-value is the area under the ¢ curve (with 8.47
degrees of freedom) beyond +2.34. This area, which was found using a computer, is
shown in Figure 7.2.4 to be 0.0454. [

Shaded area = P-value
=0.0454

Area=0.0227 Area =0.0227

Definition The P-value for a hypothesis test is the probability, computed under
the condition that the null hypothesis is true, of the test statistic being at least as
extreme as the value of the test statistic that was actually obtained.

From the definition of P-value, it follows that the P-value is a measure of
compatibility between the data and H,, and thus measures the evidence for H,: A
large P-value (close to 1) indicates a value of ¢, near the center of the ¢ distribution
(lack of evidence for H ), whereas a small P-value (close to 0) indicates a value of ¢,
in the far tails of the ¢ distribution (evidence for H).
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Drawing Conclusions from a ¢ Test

The P-value is a measure of the evidence in the data for H 4, but where does one
draw the line in determining how much evidence is sufficient? Most people would
agree that P-value = 0.0001 indicates very strong evidence, and that P-value = 0.80
indicates a lack of evidence, but what about intermediate values? For example,
should P-value = 0.10 be regarded as sufficient evidence for H 4? The answer is not
intuitively obvious.

In much scientific research, it is not necessary to draw a sharp line. However, in
many situations a decision must be reached. For example, the Food and Drug
Administration (FDA) must decide whether the data submitted by a pharmaceuti-
cal manufacturer are sufficient to justify approval of a medication. As another
example, a fertilizer manufacturer must decide whether the evidence favoring a new
fertilizer is sufficient to justify the expense of further research.

Making a decision requires drawing a definite line between sufficient and insuf-
ficient evidence. The threshold value, on the P-value scale, is called the significance
level of the test and is denoted by the Greek letter « (alpha). The value of « is cho-
sen by whoever is making the decision. Common choices are a = 0.10, 0.05, and
0.01. If the P-value of the data is less than or equal to a, the data are judged to provide
statistically significant evidence in favor of H 4; we also may say that H, is rejected. I
the P-value of the data is greater than «, we say that the data provide insufficient
evidence to claim that H 4 is true, and thus H is not rejected.

The following example illustrates the use of the ¢ test to make a decision.

Toluene and the Brain For the brain NE experiment of Example 7.2.1, the data are
summarized in Table 7.2.2. Suppose we choose to make a decision at the 5% signifi-
cance level, @ = 0.05. In Example 7.2.3 we found that the P-value of these data is
0.0454. This means that one of two things happened: Either (1) H, is true and we got
a strange set of data just by chance or (2) H, is false. If H is true, the kind of discrep-
ancy we observed between y; and ¥, would happen only about 4.5% of the time.
Because the P-value, 0.0454, is less than 0.05, we reject H, and conclude that the
data provide statistically significant evidence in favor of H,. The strength of the
evidence is expressed by the statement that the P-value is 0.0454.

Table 7.2.2 NE concentration (ng/gm)
Toluene Control

n 6 5

y 540.8 4442

s 66.1 69.6

Conclusion: The data provide sufficient evidence at the 0.05 level of significance
(P-value = 0.0454) that toluene increases NE concentration.* [

The next example illustrates a ¢ test in which there is a lack of sufficient evidence at
the 0.05 level of significance for H 4.

Fast Plants In Example 6.7.1 we saw that the mean height of fast plants was smaller
when ancy was used than when water (the control) was used. Table 7.2.3 summarizes

*Because the alternative hypothesis was H,: uy; # po, some authors would say, “We conclude that toluene
affects NE concentration,” rather than saying that toluene increases NE concentration.
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Figure 7.2.5 The two-
sided P-value for the ancy
data

Table 7.2.3 Fourteen-day height of
control and of ancy plants

Control Ancy
n 8 7
y 15.9 11.0
s 4.8 4.7

the data. The difference between the sample means is 15.9 — 11.0 = 4.9. The SE for
the difference is

4.8 4.7°
SE(?I,?Z) = ? + 7 = 246
Suppose we choose to use a« = 0.05 in testing
Hol M1 = U (i.e., M1 — My = 0)
against the alternative hypothesis
HAI M1 # 125 (i.e.,[.Ll - M2 # O)
The value of the test statistic is
o (159 — 11.0) = 0
S 2.46

=199

Formula (6.7.1) gives 12.8 degrees of freedom for the ¢ distribution. The P-value for
the test is the probability of getting a ¢ statistic that is at least as far away from zero
as 1.99. Figure 7.2.5 shows that this probability is 0.0678. (This 4-digit P-value was
found using a computer.) Because the P-value is greater than «, we have insufficient
evidence for H ; thus, we do not reject H,. That is, these data do not provide suffi-
cient evidence to conclude that w; and p, differ; the difference we observed
between y; and y, could easily have happened by chance.

Shaded area = P-value
=0.0678

Area=0.0339 Area=0.0339

[ I [
—t,=-1.99 0 t,=1.99

Conclusion: The data do not provide sufficient evidence (P-value = 0.0678) at the
0.05 level of significance to conclude that ancy and water differ in their effects on
fast plant growth (under the conditions of the experiment that was conducted). m

Note carefully the phrasing of the conclusion in Example 7.2.5. We do not say
that there is evidence for the null hypothesis, but only that there is insufficient ev-
idence against it. When we do not reject Hy, this indicates a lack of evidence that
H, is false, which is not the same thing as evidence that H, is true. The astronomer
Carl Sagan (in another context) summed up this principle of evidence in this suc-
cinct statement:>

Absence of evidence is not evidence of absence.
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In other words, nonrejection of H, is not the same as acceptance of H,. (To avoid
confusion, it may be best not to use the phrase “accept H,” at all.)

Nonrejection of H, indicates that the data are compatible with H,, but the data
may also be quite compatible with H 4. For instance, in Example 7.2.5 we found that
the observed difference between the sample means could be due to sampling varia-
tion, but this finding does not rule out the possibility that the observed difference is
actually due to a real effect caused by ancy. (Methods for such ruling out of possible
alternatives will be discussed in Section 7.7 and optional Section 7.8.)

In testing a hypothesis, the researcher starts out with the assumption that H, is
true and then asks whether the data contradict that assumption. This logic can make
sense even if the researcher regards the null hypothesis as implausible. For instance,
in Example 7.2.5 it could be argued that there is almost certainly some difference
(perhaps very small) between using ancy and not using ancy. The fact that we did not
reject Hy does not mean that we accept H,,.

Using Tables versus Using Technology

In analyzing data, how do we determine the P-value of a test? Statistical computer
software, and some calculators, will provide exact P-values. If such technology is
not available, then we can use formula (6.7.1) to find the degrees of freedom but round
down to make the value an integer. A conservative alternative to using formula (6.7.1)
is to use the smaller of n; — 1 and n, — 1 as the degrees of freedom for the test. A
liberal approach is to use n; + n, — 2 as the degrees of freedom. (Formula (6.7.1)
will always give degrees of freedom between the conservative value of the smaller of
n; — 1 and n, — 1 and the liberal value of n; + n, — 2.) We can rely on the limited
information in Table 4 to bracket the P-value, rather than to determine it exactly. The
P-value found using the conservative approach will be somewhat larger than the
exact P-value; the P-value found using the liberal approach will be somewhat smaller
than the exact P-value. The following example illustrates the bracketing process.

Fast Plants For the fast plant growth data, the value of the # statistic (as determined
in Example 7.2.5) is t, = 1.99.The smaller of n; — 1andn, — 1is7 — 1 = 6,so the
conservative degrees of freedom are 6. The liberal degrees of freedom are
8 + 7 — 2 = 13. Here is a copy of part of Table 4, with key numbers highlighted.

Upper Tail Probability
df .05 .04 .03

6 1.943 2.104 2.313
7 1.895 2.046 2241
8 1.860 2.004 2.189
9 1.833 1.973 2.150
10 1.812 1.948 2120
11 1.796 1.928 2.096
12 1.782 1.912 2.076
13 1.771 1.899 2.060

We begin with the conservative degrees of freedom, 6. From the preceding table (or
from Table 4) we find t5 o5 = 1.943 and t4 s = 2.104. The corresponding conser-
vative P-value, based on a ¢ distribution with 6 degrees of freedom, is shaded in
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Figure 7.2.6 Conservative
P-value for Example 7.2.6

Figure 7.2.6. Because f, is between the 0.04 and 0.05 critical values, the upper tail
area must be between 0.04 and 0.05; thus, the conservative P-value must be between
0.08 and 0.10.

Shaded area = P-value

TAT I I
~to.04 |~10.05 0 to.05| 0.04

—t,=-1.99 t,=1.99

The liberal degrees of freedom are 8 + 7 — 2 = 13. From the preceding table
(or from Table 4) we find 15 g4 = 1.899 and t13 3 = 2.060. Because f, is between
these 0.03 and 0.04 critical values, the upper tail area must be between 0.06 and 0.08;
thus, the liberal P-value must be between 0.06 and 0.08.

Putting these two together, we have

0.06 < P-value < 0.10 m

If the observed ¢, is not within the boundaries of Table 4, then the P-value is bracketed
on only one side. For example, if  is greater than #; (s, then the two-sided P-value is
bracketed as

P-value < 0.001

Reporting the Results of a t Test

In reporting the results of a ¢ test, a researcher may choose to make a definite deci-
sion (to claim there is significant evidence for H, or not significant evidence to
support H ,) at a specified significance level «, or the researcher may choose simply
to describe the results in phrases such as “There is very strong evidence that . ..”
or “The evidence suggests that . ..” or “There is virtually no evidence that...”. In
writing a report for publication, it is very desirable to state the P-value so that the
reader can make a decision on his or her own.

The term significant is often used in reporting results. For instance, an observed
difference is said to be “statistically significant at the 5% level” if it is large enough
to justify significant evidence for H, at & = 0.05. In Example 7.2.4 we saw that the
observed difference between the two sample means in the toluene data is statis-
tically significant at the 5% level, since the P-value is 0.0454, which is less than 0.05.
In contrast, the fast plant data of Example 7.2.5 do not show a statistically significant
difference at the 5% level, since the P-value for the fast plant data is 0.0678.
However, the difference in sample means in the fast plant data is statistically
significant at the « = 0.10 level, since the P-value is less than 0.10. When « is not
specified, it is usually understood to be 0.05; we should emphasize, however, that « is
an arbitrarily chosen value and there is nothing “official” about 0.05. Unfortunately,
the term “significant” is easily misunderstood and should be used with care; we will
return to this point in Section 7.7.

Note: In this section we have considered tests of the form Hg puy = u,
(ie., u; — mp = 0) versus H 4: uy # w, (e, ug — po # 0); this is the most common
pair of hypotheses. However, it may be that we wish to test that w is greater than u,
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My = C VErsus

H 4: uy — wo # ¢ we use the ¢ test with test statistic given by

1 —m —¢

{o=
' SE(?I ~Y))

From this point on, the test proceeds as before (i.e., as for the case when ¢ = 0).

Exercises 7.2.1-7.2.17

[Note: Answers to hypothesis testing questions should
include a statement of the conclusion in the context of
the setting. (See Examples 7.2.4 and 7.2.5.)]

7.2.1 For each of the following data sets, use Table 4 to
bracket the two-tailed P-value of the data as analyzed by
the ¢ test.

(a) SAMPLE | SAMPLE 2
n 4 3
y 735 854

SEw,-v,) = 38 withdf = 4

(b) SAMPLE |

SAMPLE 2
n 7 7
y 5.3 5.0

SE,-v, = 024 with df = 12

(©) SAMPLE | SAMPLE 2
n 15 20
y 36 30

SEy, v, = 1.3 with df = 30

7.2.2 For each of the following data sets, use Table 4 to
bracket the two-tailed P-value of the data as analyzed by
the ¢ test.

(a) SAMPLE |

SAMPLE 2
n 8 5
y 100.2 106.8

SE,-v, = 5.7 with df = 10

(b) SAMPLE | SAMPLE 2
n 8 8
v 49.8 443

SEy, v, = 1.9 with df = 13

(c) SAMPLE | SAMPLE 2
n 10 15
7 3.58 3.00

SEw,-v, = 0.12 with df = 19

7.2.3 For each of the following situations, suppose
Hy: py = w, is being tested against H 4: uq # p,. State
whether or not there is significant evidence for H 4.

(a) P-value = 0.085,« = 0.10.

(b) P-value = 0.065, a = 0.05.

(c) t, = 3.75 with 19 degrees of freedom, &« = 0.01.

(d) t, = 1.85 with 12 degrees of freedom, & = 0.05.

724 For each of the following situations, suppose
Hy: w1 = w, is being tested against H 4: g # wo. State
whether or not there is significant evidence for H 4.

(a) P-value = 0.046, « = 0.02.

(b) P-value = 0.033, « = 0.05.

(c) t, = 2.26 with 5 degrees of freedom, « = 0.10.

(d) t, = 1.94 with 16 degrees of freedom, « = 0.05.

7.2.5 In a study of the nutritional requirements of cattle,
researchers measured the weight gains of cows during a
78-day period. For two breeds of cows, Hereford (HH)
and Brown Swiss/Hereford (SH), the results are summa-
rized in the following table.® [Note: Formula (6.7.1) yields
71.9 df.]

HH SH
n 33 51
y 183 139
s 178 191

Use a t test to compare the means. Use o = 0.10.

7.2.6 Backfat thickness is a variable used in evaluating
the meat quality of pigs. An animal scientist measured
backfat thickness (cm) in pigs raised on two different
diets, with the results given in the table.’

DIET | DIET 2
y 349 305
s 040 040
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Consider using the ¢ test to compare the diets. Bracket
the P-value, assuming that the number of pigs on each
diet was

(a) 5
(b) 10
(c) 15

Use n; + n, — 2 as the approximate degrees of freedom.

7.2.7 Heart disease patients often experience spasms of
the coronary arteries. Because biological amines may
play a role in these spasms, a research team measured
amine levels in coronary arteries that were obtained
postmortem from patients who had died of heart disease
and also from a control group of patients who had died
from other causes. The accompanying table summarizes
the concentration of the amine serotonin.

SEROTONIN (NG/GM)

HEART DISEASE CONTROLS
n 8 12
y 3,840 5,310
SE 850 640

(a) For these data, the SE of (Y; — Y,) is 1,064 and
df = 14.3 (which can be rounded to 14). Use a ¢ test
to compare the means at the 5% significance level.

(b) Verify the value of SE v, v, given in part (a).

7.2.8 In a study of the periodical cicada (Magicicada
septendecim), researchers measured the hind tibia
lengths of the shed skins of 110 individuals. Results for
males and females are shown in the accompanying
table.”

TIBIA LENGTH (m)

GROUP n MEAN SD
Males 60 78.42 2.87
Females 50 80.44 3.52

(a) Use a t test to investigate the association of tibia
length on gender in this species. Use the 5% signifi-
cance level. [Note: Formula (6.7.1) yields 94.3 df.]

(b) Given the preceding data, if you were told the tibia
length of an individual of this species, could you
make a fairly confident prediction of its sex? Why or
why not?

(c) Repeat the t test of part (a), assuming that the means
and standard deviations were as given in the table,
but that they were based on only one-tenth as many
individuals (6 males and 5 females). [Note: Formula
(6.7.1) yields 7.8 df.]

7.2.9 Myocardial blood flow (MBF) was measured for
two groups of subjects after five minutes of bicycle
exercise. The normoxia (“normal oxygen”) group was
provided normal air to breathe whereas the hypoxia group
was provided with a gas mixture with reduced oxygen, to
simulate high altitude. The results (ml/min/g) are shown
in the table.!” [Note: Formula (6.7.1) yields 12.2 df.]

NORMOXIA HYPOXIA

3.45 6.37
3.09 5.69
3.09 558
2.65 527
2.49 511
233 4.88
228 4.68
224 3.50
2.17
134

n 10 8

y 2.51 5.14

s 0.60 0.84

Use a ¢ test to investigate the effect of hypoxia on MBF.
Use a = 0.05.

7.2.10 In a study of the development of the thymus
gland, researchers weighed the glands of 10 chick
embryos. Five of the embryos had been incubated 14 days
and 5 had been incubated 15 days. The thymus weights
were as shown in the table.! [Note: Formula (6.7.1)
yields 7.7 df.]

THYMUS WEIGHT (MG)
14 DAYS 15 DAYS
29.6 32.7
21.5 40.3
28.0 23.7
34.6 252
44.9 24.2
n 5 5
y 31.72 29.22
s 8.73 7.19

(a) Use at test to compare the means at « = 0.10.

(b) Note that the chicks that were incubated longer had
a smaller mean thymus weight. Is this “backward”
result surprising, or could it easily be attributed to
chance? Explain.



7.2.11 As part of an experiment on root metabolism, a
plant physiologist grew birch tree seedlings in the green-
house. He flooded four seedlings with water for one day
and kept four others as controls. He then harvested the
seedlings and analyzed the roots for ATP content. The re-
sults (nmol ATP per mg tissue) are shown in the table.!?
[Note: Formula (6.7.1) yields 5.6 df.]

FLOODED  CONTROL

1.45 1.70
1.19 2.04
1.05 1.49
1.07 1.91

n 4 4

y 1.190 1.785

s 0.184 0.241

Use a ¢ test to investigate the effect of flooding. Use
a = 0.05.

7.2.12 After surgery a patient’s blood volume is often
depleted. In one study, the total circulating volume of
blood plasma was measured for each patient immediate-
ly after surgery. After infusion of a “plasma expander”
into the bloodstream, the plasma volume was measured
again and the increase in plasma volume (ml) was calcu-
lated. Two of the plasma expanders used were albumin
(25 patients) and polygelatin (14 patients). The accompa-
nying table reports the increase in plasma volume.!
[Note: Formula (6.7.1) yields 33.6 df.]

Use a ¢ test to compare the mean increase in plasma
volume under the two treatments. Let @ = 0.01.

ALBUMIN  POLYGELATIN
n 25 14
mean increase 490 240
SE 60 30

7.2.13 Nutritional researchers conducted an investiga-
tion of two high-fiber diets intended to reduce serum
cholesterol level. Twenty men with high serum choles-
terol were randomly allocated to receive an “oat” diet or
a “bean” diet for 21 days. The table summarizes the fall
(before minus after) in serum cholesterol levels.'* Use a ¢
test to compare the diets at the 5% significance level.
[Note: Formula (6.7.1) yields 17.9 df.]

FALL IN
CHOLESTEROL (MG/DL)
DIET n MEAN SD

Oat 10 53.6 31.1
Bean 10 55.5 294
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7.2.14 Suppose we have conducted a ¢ test, with
a = 0.05, and the P-value is 0.03. For each of the follow-
ing statements, say whether the statement is true or false
and explain why.

(a) We reject Hy with « = 0.05.
(b) We have significant evidence for H, with « = 0.05.
(c) We would reject Hy if a were 0.10.

(d) We do not have significant evidence for H, with
a = 0.10.

(e) If Hyis true, the probability of getting a test statistic
at least as extreme as the value of the 7, that was
actually obtained is 3%.

(f) There is a 3% probability that Hj is true.

7.2.15 Suppose we have conducted a t test, with
a = 0.10, and the P-value is 0.07. For each of the follow-
ing statements, say whether the statement is true or false
and explain why.

(a) We reject Hy with a = 0.10.
(b) We have significant evidence for H, with « = 0.10.
(c) We would reject Hy if a were 0.05.

(d) We do not have significant evidence for H, with
a = 0.05.

(e) The probability that Y, is greater than Y, is 0.07.

7.2.16 The following table shows the number of bacteria
colonies present in each of several petri dishes, after E.
coli bacteria were added to the dishes and they were
incubated for 24 hours. The “soap” dishes contained a
solution prepared from ordinary soap; the “control” dish-
es contained a solution of sterile water. (These data were
seen in Exercise 6.6.9.)

CONTROL SOAP

30 76
36 27
66 16
21 30
63 26
38 46
35 6
45

n 8 7

y 41.8 32.4

s 15.6 22.8

SE 5.5 8.6

Use a ¢ test to investigate whether soap affects the num-
ber of bacteria colonies that form. Use « = 0.10. [Note:
Formula (6.7.1) yields 10.4 degrees of freedom for these
data.]
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germination.'

these data.]

7.2.17 Researchers studied the effect of a houseplant fer- CONTROL FERTILIZED
tilizer on radish sprout growth. They randomly selected
. - 3.4 1.6 2.8 1.9
some radish seeds to serve as controls, while others were
planted in aluminum planters to which fertilizer sticks 4.4 29 1.9 2.7
were added. Other conditions were held constant 35 2.3 3.6 23
between the two groups. The following table shows data 9 )38 12 18
on the heights of plants (in cm) two weeks after ) ) : '
2.7 2.5 24 2.7
Use a t test to investigate whether the fertilizer has 26 23 29 26
an effect on average radish sprout growth. Use a = 0.05.
[Note: Formula (6.7.1) yields 53.5 degrees of freedom for 37 L6 3.6 L3
2.7 1.6 1.2 3.0
2.3 3.0 0.9 1.4
2.0 2.3 1.5 1.2
1.8 32 24 2.6
2.3 2.0 1.7 1.8
2.4 2.6 1.4 1.7
2.5 24 1.8 1.5
n 28 28
y 2.58 2.04
s 0.65 0.72

7.3 Further Discussion of the t Test

In this section we discuss more fully the method and interpretation of the ¢ test.

Relationship between Test and Confidence Interval

There is a close connection between the confidence interval approach and the
hypothesis testing approach to the comparison of w; and u,. Consider, for example, a
95% confidence interval for (w; — u,) and its relationship to the ¢ test at the 5% sig-
nificance level. The ¢ test and the confidence interval use the same three quantities —
(Y1 — Y3),SEv,-v,) and f;pps—but manipulate them in different ways.

In the ¢ test, when a = 0.05, we have significant evidence for H, (and so we
reject Hy) if the P-value is less than or equal to 0.05. This happens if and only if the
test statistic, ¢, is in the tail of the ¢ distribution, at or beyond =+¢; 5. If the magni-
tude of ¢, (symbolized as [z,]) is greater than or equal to t; s, then the P-value is
less than or equal to 0.05 and we have significant evidence for H 4; if |¢,| is less than
to.02s, then the P-value is greater than 0.05 and we do not have significant evidence
for H 4. Figure 7.3.1 shows this relationship.

Thus, we lack significant evidence for H4: u; — u, # 0if and only if |t < fy00s-
That is, we lack significant evidence for H,4 when

1 — ¥l
—— < loms

SEw,-v,)
This is equivalent to

V1 — Y2l < t0.02s SEv,-v,)
or

—t0.025 SEw,-v,) < (U1 — ¥2) < too2sSEw,-v,)
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Shaded area = P-value Shaded area = P-value

I I I I I I
—l.025 0 10,025 —lo.025 0 ' 10.025

(a) (b)

Figure 7.3.1 Possible outcomes of the ¢ test at « = 0.05. (a) If |¢,| = to5 then
P-value = 0.05 and there is significant evidence for H 4 (so H is rejected). (b) If
|t,| < t.005, then P-value > 0.05 and there is a lack of significant evidence for H 4.

which is equivalent to

_(yl - yZ) — Toos SE(YI,?Z) <0< —(% - yz) + fh.05 SE(?I,?Z)
or
1 = M) T t00sSEw,-vy) > 0> (1 = M) — lozsSEw,-v,)
or

1 = ¥2) — 1005 SEw,-v,) <0< (1 = ) + toos SEw,-vy)

Thus, we have shown that we lack significant evidence for H 4:u; — p, # 0if and only
if the confidence interval for (u; — u,) includes zero. Conversely, if the 95% confi-
dence interval for (u; — u,) does not cover zero, then we have significant evidence
for H,:uy — po # 0 when a = 0.05. (The same relationship holds between the 90%
confidence interval and the test at « = 0.10, and so on.) We illustrate with an example.

Crawfish Lengths Biologists took samples of the crawfish species Orconectes sanborii
from two rivers in central Ohio, the Upper Cuyahoga River (CUY) and East Fork
of Pine Creek (EFP), and measured the length (mm) of each crawfish captured.'®
Table 7.3.1 shows the summary statistics; Figure 7.3.2 shows parallel boxplots of the
data. The EFP sample distribution is shifted down from the CUY distribution; both
distributions are reasonably symmetric.

Table 7.3.1 Crawfish data: 30
length (mm) —
CUY EFP
~ 25 —
n 30 30 g
y 22.91 21.97 :::
on
s 3.78 2.90 § 20
) 15 — . o
Figure 7.3.2 Boxplots of T T
the crawfish data CuUY EFP

For these data the two SEs are 3.78/\/30 = 0.69 and 2.90/\/30 = 0.53 for CUY
and EFP, respectively. The degrees of freedom are

~(0.69* + 05377
0.69%/30 + 0.53%/30
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Figure 7.3.3 At test at

a = 0.05.There is
significant evidence for H 4
if ¢, falls in the hatched
region

The quantities needed for a ¢ test with & = 0.05 are

Y, — ¥, = 2291 — 21.97 = 0.94

SEw,-v, = V0.69* + 0.53% = 0.87

and

The test statistic is

(2291 -2197) -0 0.94

fs 0.87 =gy 8

The P-value for this test (found using a computer) is 0.2850, which is greater than
0.05, so we do not reject Hy. (A quick look at Table 4, using df = 50, shows that the
P-value is between 0.20 and 0.40.)

If we construct a 95% confidence interval for (u; — u,) we get

0.94 + 2.006 X 0.87

or (—2.68,0.81).*

The confidence interval includes zero, which is consistent with not having signif-
icant evidence for H 4: u; — py # 0in the ¢ test. Note that this equivalence between
the test and the confidence interval makes common sense; according to the confi-
dence interval, u; may be as much as 2.68 less, or as much as 0.81 more, than w,; it is
natural, then, to say that we are uncertain as to whether u, is greater than (or less
than, or equal to) i, . ]

In the context of the Student’s ¢+ method, the confidence interval approach and
hypothesis testing approach are different ways of using the same basic information.
The confidence interval has the advantage that it indicates the magnitude of the dif-
ference between u; and u,. The testing approach has the advantage that the P-value
describes on a continuous scale the strength of the evidence that u; and u, are real-
ly different. In Section 7.7 we will explore further the use of a confidence interval to
supplement the interpretation of a ¢ test. In later chapters we will encounter other
hypothesis tests that cannot so readily be supplemented by a confidence interval.

Interpretation of «

In analyzing data or making a decision based on data, you will often need to choose
a significance level . How do you know whether to choose @ = 0.05 or @ = 0.01 or
some other value? To make this judgment, it is helpful to have an operational inter-
pretation of . We now give such an interpretation.

Recall from Section 7.2 that the sampling distribution of ¢, if H, is true, is a
Student’s ¢ distribution. Let us assume for definiteness that df = 60 and that « is
chosen equal to 0.05. The critical value (from Table 4) is # 5 = 2.000. Figure 7.3.3

Area=0.025 Area =0.025

*The value of 1505 = 2.006 is based on 56.3 degrees of freedom. If we were to use 50 degrees of freedom (i.e., if
we had to rely on Table 4, rather than a computer) the ¢ multiplier would be 2.009. This makes almost no differ-
ence in the resulting confidence interval.
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shows the Student’s ¢ distribution and the values £2.000. The total shaded area in
the figure is 0.05; it is split into two equal parts of area 0.025 each. We can think of
Figure 7.3.3 as a formal guide for deciding whether the evidence is strong enough to
significantly support H 4: If the observed value of ¢ falls in the hatched regions of
the 7, axis, then there is significant evidence for H 4. But the chance of this happen-
ing is 5%, if H, is true. Thus, we can say that

Pr{data provide significant evidence for H,} = 0.05 if H,is true

This probability has meaning in the context of a meta-study (depicted in
Figure 7.3.4) in which we repeatedly sample from two populations and calculate a
value of ¢,. It is important to realize that the probability refers to a situation in which
His true. In order to concretely picture such a situation, you are invited to suspend
disbelief for a moment and come on an imaginary trip in Example 7.3.2.

Population 1 Population 2

Figure 7.3.4 Meta-study

for the t test

Example

7.3.2

o : o

o p o

ete.

Music and Marigolds* Imagine that the scientific community has developed great
interest in the influence of music on the growth of marigolds. One school of investi-
gation centers on whether music written by Bach or Mozart produces taller plants.
Plants are randomly allocated to listen to Bach (treatment 1) or Mozart (treat-
ment 2) and, after a suitable period of listening, data are collected on plant height.
The null hypothesis is

H,: Marigolds respond equally well to Bach or Mozart.

or

Ho: py = po
where
w1 = Mean height of marigolds if exposed to Bach

o = Mean height of marigolds if exposed to Mozart

*This example is intentionally fanciful.
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Assume for the sake of argument that H, is in fact true. Imagine now that many
investigators perform the Bach versus Mozart experiment, and that each experi-
ment results in data with 60 degrees of freedom. Suppose each investigator analyzes
his or her data with a ¢ test at « = 0.05. What conclusions will the investigators
reach? In the meta-study of Figure 7.3.4, suppose each pair of samples represents a
different investigator. Since we are assuming that w; and u, are actually equal, the
values of ¢, will deviate from 0 only because of chance sampling error. If all the
investigators were to get together and make a frequency distribution of their ¢
values, that distribution would follow a Student’s ¢ curve with 60 degrees of free-
dom. The investigators would make their decisions as indicated by Figure 7.3.3, so
we would expect them to have the following experiences:

95% of them would (correctly) not find significant evidence for H 4;

2.5% of them would find significant evidence for H, and conclude (incorrectly)
that the plants prefer Bach.

2.5% of them would find significant evidence for H, and conclude (incorrectly)
that the plants prefer Mozart.

Thus, a total of 5% of the investigators would find significant evidence for the alter-
native hypothesis. [

Example 7.3.2 provides an image for interpreting a. Of course, in analyzing
data, we are not dealing with a meta-study but rather with a single experiment.
When we perform a ¢ test at the 5% significance level, we are playing the role of one
of the investigators in Example 7.3.2, and the others are imaginary. If we find signif-
icant evidence for H 4, there are two possibilities:

1. H,isin fact true; or

2. H,is in fact true, but we are one of the unlucky 5% who obtained data that
provided significant evidence for H, anyway. In this case, we can think of the
significant evidence for H 4 as “setting off a false alarm.”

We feel “confident” in claiming our evidence for H, is significant because the
second possibility is unlikely (assuming that we regard 5% as a small percentage).
Of course, we never know (unless someone replicates the experiment) whether or
not we are one of the unlucky 5%.

Significance Level versus P-Value Students sometimes find it hard to distinguish
between significance level («) and P-value.* For the ¢ test, both « and the P-value
are tail areas under Student’s 7 curve. But « is an arbitrary prespecified value; it can
be (and should be) chosen before looking at the data. By contrast, the P-value is
determined from the data;indeed, giving the P-value is a way of describing the data.
You may find it helpful at this point to compare Figure 7.2.3 with Figure 7.3.3. The
shaded area represents P-value in the former and « in the latter figure.

Type | and Type Il Errors

We have seen that a can be interpreted as a probability:

a = Pr{finding significant evidence for H 4} if His true

*Unfortunately, the term “significance level” is not used consistently by all people who write about statistics.
A few authors use the terms “significance level” or “significance probability” where we have used “P-value.”
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Claiming that data provide evidence that significantly supports H, when H, is true
is called a Type I error. In choosing «, we are choosing our level of protection
against Type I error. Many researchers regard 5% as an acceptably small risk. If we
do not regard 5% as small enough, we might choose to use a more conservative
value of a such as @ = 0.01; in this case the percentage of true null hypotheses that
we reject would be not 5% but 1%.

In practice, the choice of @ may depend on the context of the particular experi-
ment. For example, a regulatory agency might demand more exacting proof of effi-
cacy for a toxic drug than for a relatively innocuous one. Also, a person’s choice of «
may be influenced by his or her prior opinion about the phenomenon under study.
For instance, suppose an agronomist is skeptical of claims for a certain soil treat-
ment; in evaluating a new study of the treatment, he might express his skepticism by
choosing a very conservative significance level (say, « = 0.001), thus indicating that
it would take a lot of evidence to convince him that the treatment is effective. For
this reason, written reports of an investigation should include a P-value, so that each
reader is free to choose his or her own value of « in evaluating the reported results.

If H, is true, but we do not observe sufficient evidence to support H 4, then we
have made a Type II error. Table 7.3.2 displays the situations in which Type I and
Type I errors can occur. For example, if we find significant evidence for H 4, then we
eliminate the possibility of a Type II error, but by rejecting H, we may have made a
Type I error.

Table 7.3.2 Possible outcomes of testing H,

True situation

Hj true H 4 true
OUR Lack of significant Correct Type II error
DECISION evidence for H 4
Significant evidence Type I error Correct
for H A

The consequences of Type I and Type 11 errors can be very different. The follow-
ing two examples show some of the variety of these consequences.

Marijuana and the Pituitary Cannabinoids, which are substances contained in marijua-
na, can be transmitted from mother to young through the placenta and through
the milk. Suppose we conduct the following experiment on pregnant mice: We give
one group of mice a dose of cannabinoids and keep another group as controls. We
then evaluate the function of the pituitary gland in the offspring. The hypotheses
would be

H,: Cannabinoids do not affect pituitary of offspring.
H 4: Cannabinoids do affect pituitary of offspring.

If in fact cannabinoids do not affect the pituitary of the offspring, but we conclude
that our data provide significant evidence for H,, we would be making a Type I
error; the consequence might be unnecessary alarm if the conclusion were made
public. On the other hand, if cannabinoids do affect the pituitary of the offspring,
but our ¢ test results in a lack of significant evidence for H 4, this would be a Type 11
error; one consequence might be unjustifiable complacency on the part of
marijuana-smoking mothers. ]
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Immunotherapy Chemotherapy is standard treatment for a certain cancer. Suppose
we conduct a clinical trial to study the efficacy of supplementing the chemotherapy
with immunotherapy (stimulation of the immune system). Patients are given either
chemotherapy or chemotherapy plus immunotherapy. The hypotheses would be

Hj: Immunotherapy is not effective in enhancing survival.
H ,: Immunotherapy does affect survival.

If immunotherapy is actually not effective, but we conclude that our data provide
significant evidence for H 4 and thus conclude that immunotherapy is effective, then
we have made a Type I error. The consequence, if this conclusion is acted on by the
medical community, might be the widespread use of unpleasant, dangerous, and
worthless immunotherapy. If, on the other hand, immunotherapy is actually effec-
tive, but our data do not enable us to detect that fact (perhaps because our sample
sizes are too small), then we have made a Type 11 error, with consequences quite dif-
ferent from those of a Type I error: The standard treatment will continue to be used
until someone provides convincing evidence that supplementary immunotherapy is
effective. If we still “believe” in immunotherapy, we can conduct another trial (per-
haps with larger samples) to try again to establish its effectiveness. [

As the foregoing examples illustrate, the consequences of a Type I error are usually
quite different from those of a Type II error. The likelihoods of the two types of
error may be very different, also. The significance level « is the probability of
obtaining significant evidence for H, if H is true. Because « is chosen at will, the
hypothesis testing procedure “protects” you against Type I error by giving you con-
trol over the risk of such an error. This control is independent of the sample size and
other factors. The chance of a Type II error, by contrast, depends on many factors,
and may be large or small. In particular, an experiment with small sample sizes often
has a high risk of Type II error.

We are now in a position to reexamine Carl Sagan’s aphorism that “Absence
of evidence is not evidence of absence.” Because the risk of Type I error is con-
trolled and that of Type II error is not, our state of knowledge is much stronger
after rejection of a null hypothesis than after nonrejection. For example, suppose
we are testing whether a certain soil additive is effective in increasing the yield of
field corn. If we find significant evidence for H 4 and claim the additive is effective,
then either (1) we are right; or (2) we have made a Type I error. Since the risk of a
Type I error is controlled, we can be relatively confident of our conclusion that the
additive is effective (although not necessarily very effective). Suppose, on the
other hand, that the data are such that there is a lack of evidence for the additive’s
effectiveness—we do not have evidence for H4. Then either (1) we are right (that
is, Hy is true), or (2) we have made a Type II error. Since the risk of a Type II error
may be quite high, we cannot say confidently that the additive is ineffective. In
order to justify a claim that the additive is ineffective, we would need to supple-
ment our test of hypothesis with further analysis, such as a confidence interval or
an analysis of the chance of Type II error. We will consider this in more detail in
Sections 7.6 and 7.7.

Power

As we have seen, Type II error is an important concept. The probability of making a
Type II error is denoted by S:

B = Pr{lack of significant evidence for H 4} if H 4 is true
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The chance of not making a Type II error when H, is true—that is, the chance of
having significant evidence for H, when H 4 is true—is called the power of a statis-
tical test:

Power = 1 — B = Pr{significant evidence for H 4} if H, is true

Thus, the power of a ¢ test is a measure of the sensitivity of the test, or the ability of
the test procedure to detect a difference between w; and u, when such a difference
really does exist. In this way the power is analogous to the resolving power of a
microscope.

The power of a statistical test depends on many factors in an investigation,
including the sample sizes, the inherent variability of the observations, and the
magnitude of the difference between wu; and u,. All other things being equal, using
larger samples gives more information and thereby increases power. In addition, we
will see that some statistical tests can be more powerful than others, and that some
study designs can be more powerful than others.

The planning of a scientific investigation should always take power into consid-
eration. No one wants to emerge from lengthy and perhaps expensive labor in the
lab or the field, only to discover upon analyzing the data that the sample sizes were
insufficient or the experimental material too variable, so that experimental effects
that were considered important were not detected. Two techniques are available to
aid the researcher in planning for adequate sample sizes. One technique is to decide
how small each standard error ought to be and choose »n using an analysis such as
that of Section 6.4. A second technique is a quantitative analysis of the power of the

statistical test. Such an analysis for the ¢ test is discussed in Section 7.7.

Exercises 7.3.1-7.3.8

7.3.1 (Sampling exercise) Refer to the collection of

100 ellipses shown with Exercise 3.1.1, which can be

thought of as representing a natural population of the

organism C. ellipticus. Use random digits (from Table 1

or your calculator) to choose two random samples of

five ellipses each. Use a metric ruler to measure the

body length of each ellipse; measurements to the nearest

millimeter will be adequate.

(a) Compare the means of your two samples, using a ¢
test at @ = 0.05.

(b) Did the analysis of part (a) lead you to a Type I error,
aType II error, or no error?

7.3.2 (Sampling exercise) Simulate choosing random
samples from two different populations, as follows. First,
proceed as in Exercise 7.3.1 to choose two random sam-
ples of five ellipses each and measure their lengths. Then
add 6 mm to each measurement in one of the samples.
(a) Compare the means of your two samples, using a ¢
testat a = 0.05.
(b) Did the analysis of part (a) lead you to a Type I error,
aType II error, or no error?

7.3.3 (Sampling exercise) Prepare simulated data as fol-
lows. First, proceed as in Exercise 7.3.1 to choose two
random samples of five ellipses each and measure their
lengths. Then, toss a coin. If the coin falls heads, add

6 mm to each measurement in one of the samples. If the
coin falls tails, do not modify either sample.

(a) Prepare two copies of the simulated data. On the
Student Copy, show the data only; on the Instructor
Copy, indicate also which sample (if any) was
modified.

(b) Give your Instructor Copy to the instructor and
trade your Student Copy with another student when
you are told to do so.

(c) After you have received another student’s paper,
compare the means of his or her two samples using a
two-tailed ¢ test at &« = 0.05. If you reject H,, decide
which sample was modified.

7.3.4 Suppose a new drug is being considered for
approval by the Food and Drug Administration. The null
hypothesis is that the drug is not effective. If the FDA
approves the drug, what type of error, Type I or Type 11,
could not possibly have been made?

7.3.5 In Example 7.3.1, the null hypothesis was not re-
jected. What type of error, Type I or Type II, might have
been made in that ¢ test?

7.3.6 Suppose that a 95% confidence interval for
(u1 — mo) is calculated to be (1.4, 6.7). If we test
Hy g — pp = 0versus H 40wy — o # 0using o = 0.05,
will we reject Hy? Why or why not?
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7.3.7 Suppose that a 95% confidence interval for
(uy — mo) is calculated to be (—7.4,—2.3). If we test
Hy: py = py versus H 4 py # pp using a = 0.10, will we
reject Hy? Why or why not?

7.3.8 A dairy reasearcher has developed a new technique
for culturing cheese that is purported to age cheese in
substantially less time than traditional methods without
affecting other properties of the cheese. Retrofitting
cheese manufacturing plants with this new technology
will initially cost millions of dollars, but if it indeed
reduces aging time—even marginally—it will lead to
higher company profits in the long run. If, on the other
hand, the new method is no better than the old, the retro-

fit would be a financial mistake. Before making the deci-
sion to retrofit, an experiment will be performed to com-
pare culture times of the new and old methods.

(a) In plain English, what are the null and alternative
hypotheses for this experiment?

(b) In the context of the problem, what would be the
consequence of a Type I error?

(c) In the context of the problem, what would be the
consequence of a Type II error?

(d) In your opinion, which type of error would be more
serious? Justify your answer. (It is possible to argue
both sides.)

7.4 Association and Causation

When we are comparing two populations we often focus on the nature of the rela-
tionship between a response variable, Y —a variable that measures an outcome of
interest—and an explanatory variable X —a variable used to explain or predict an
outcome. As we will explore next, with data collected from an experiment we can
assess whether or not there is evidence that X affects the mean value of Y. That is,
we can ask, Do changes in X cause changes in Y? (For example, does toluene affect
the mean amount of norepinephrine in the brain?) With observational studies our
conclusions are more limited—we are not able to make causal claims, but rather
only conclusions regarding association between X and Y. For example, we can ask,
Are changes in X associated with changes in the mean value of Y? Or, Is there
evidence that the mean values of Y differ for two populations? (For example, do
crawfish captured from two different locations have different mean lengths?)

Thus, our ability to investigate such questions depends on how the data were
collected: experimentally or with an observational study. Below are examples of
each type of study as they pertain to comparing the means of two samples, followed
by a more formal discussion of these study types.

Example Hematocrit in Males and Females Hematocrit level is a measure of the concentration of
7.4.1 red cells in blood. Table 7.4.1 gives the sample means and standard deviations of
hematocrit values for two samples of 17-year-old American youths —489 males and
469 females.!’ ]
Table 7.4.1 Hematocrit (percent)
Males Females

Mean 45.8 40.6

SD 2.8 29
Example Pargyline and Sucrose Consumption A study was conducted to determine the effect of
74.2 the psychoactive drug Pargyline on feeding behavior in the black blowfly Phormia

regina. The response variable was the amount of sucrose (sugar) solution a fly would
drink in 30 minutes. The experimenters used two separate groups of flies: a group
injected with Pargyline (905 flies) and a control group injected with saline (900
flies). Comparing the responses of the two groups provides an indirect assessment
of the effect of Pargyline. (One might propose that a more direct way to determine
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the effect of the drug would be to measure each fly twice—on one occasion after
injecting Pargyline and on another occasion after injecting saline. However, this
direct method is not practical because the measurement procedure disturbs the fly
so much that each fly can be measured only once.) Table 7.4.2 shows the means and
standard deviations for the two groups.'® [

Table 7.4.2 Sucrose consumption (mg)

Control Pargyline
Mean 14.9 46.5
SD 5.4 11.7

Examples 7.4.1 and 7.4.2 both involve two-sample comparisons, but notice that
the two studies differ in a fundamental way. In Example 7.4.1 the samples come
from populations that occur naturally; the investigator is merely an observer:

Population 1: Hematocrit values of 17-year-old U.S. males
Population 2: Hematocrit values of 17-year-old U.S. females

By contrast, the two populations in Example 7.4.2 do not actually exist but rather
are defined in terms of specific experimental conditions; in a sense, the populations
are created by experimental intervention:

Population 1: Sucrose consumptions of blowflies when injected with saline
Population 2: Sucrose consumptions of blowflies when injected with Pargyline

These two types of two-sample comparisons—the observational and the
experimental —are both widely used in research. The formal methods of analysis are
often the same for the two types, but the interpretation of the results is often some-
what different. For instance, in Example 7.4.2 it might be reasonable to say that Par-
gyline causes the increase in sucrose consumption, while no such notion applies in
Example 7.4.1.

Observational versus Experimental Studies

A major consideration in interpreting the results of a biological study is whether the
study was observational or experimental. In an experiment, the researcher inter-
venes in or manipulates the experimental conditions.* In an observational study, the
researcher merely observes an existing situation, as in the following example.

Cigarette Smoking In studies of the effects of smoking cigarettes, both experimental
and observational approaches have been used. Effects in animals can be studied
experimentally, because animals (for instance, dogs) can be allocated to treatment
groups and the groups can be given various doses of cigarette smoke. Effects in
humans are usually studied observationally. In one study, for example, pregnant
women were questioned about their smoking habits, dietary habits, and so on.!”
When the babies were born, their physical and mental development was followed.

*The conditions being manipulated must be those defining the populations being compared. For example, if five
men and five women are given the same drug and then the sexes are compared, the comparison of men to
women is observational, not experimental.
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One striking finding related to the babies’ birthweights: The smokers tended to have
smaller babies than the nonsmokers. The difference was not attributable to chance
(the P-value was less than 107°). Nevertheless, it was far from clear that the differ-
ence was caused by smoking, because the women who smoked differed from the
nonsmokers in many other aspects of their lifestyle besides smoking—for instance,
they had very different dietary habits. [

As Example 7.4.3 illustrates, it can be difficult to determine the exact nature
of a cause—effect relationship in an observational study. In an experiment, on the
other hand, a cause—effect relationship may be easy to see, based on the way in
which the researcher manipulated the experimental conditions. To help fix the
ideas, consider studying cholesterol level. Suppose a group of patients with high
cholesterol levels enrolls in a clinical trial—that is, in a medical experiment—in
which some of the patients are randomly chosen to receive a new drug and others
are given a standard drug that has shown only modest effects in the past. If a two-
sample ¢ test shows that the mean cholesterol level decreased more for those on
the new drug than for those on the standard drug, then the researcher can con-
clude that the new drug caused the superior outcome and is better than the stan-
dard drug.

Now consider a two-sample ¢ test to compare average cholesterol level in a
random sample of 50-year-olds to average cholesterol level in a random sample of
25-year-olds. Suppose a two-sample ¢ test gives a small P-value, with the 50-year-
olds having higher cholesterol than the 25-year-olds. We could be fairly confident
that cholesterol level tends to increase with age. However, it would be possible that
some other explanation were at work. For example, maybe diets have changed over
time and the 25-year-olds are eating foods that the 50-year-olds don’t eat, causing
the 25-year-olds to have low cholesterol; perhaps if the 25-year-olds keep the same
diet until they are 50, they will still have low cholesterol at age 50.

As a third example, consider comparing a random sample of home owners to a
random sample of renters. Suppose a two-sample ¢ test shows a significantly higher
mean cholesterol level among the home owners than among the renters. We should
not conclude that buying a home causes one’s cholesterol level to rise. Rather, we
should consider that people who own homes tend to be older than are renters. It
might very well be the case that age is the causal factor, which explains why the
home owners have higher cholesterol than do the renters.

All three of these cases might involve a two-sample ¢ test and the rejection of
H,. Indeed, we might get the same P-value in each test. However, the conclusions
we can draw from the three situations are quite different. The scope of the inference
we can draw depends on the way in which the data are collected. Experiments allow
us to infer cause—effect relationships that can only be guessed at in observational
studies. Sometimes an observational study will leave us feeling reasonably confident
that we understand the causal mechanism at work; however, we will see that draw-
ing such conclusions is fraught with danger. For this reason, researchers interested in
drawing causal conclusions should make great efforts to conduct controlled experi-
ments rather than observational studies.

More on Observational Studies

The difficulties in interpreting observational studies arise from two primary sources:

Nonrandom selection from populations
Uncontrolled extraneous variables
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The following example illustrates both of these.

Race and Brain Size In the nineteenth century, much effort was expended in the
attempt to show “scientifically” that certain human races were inferior to others.
A leading researcher on this subject was the American physician S. G. Morton, who
won widespread admiration for his studies of human brain size. Throughout his life,
Morton collected human skulls from various sources, and he carefully measured the
cranial capacities of hundreds of these skulls. His data appeared to suggest that (as
he suspected) the “inferior” races had smaller cranial capacities. Table 7.4.3 gives
a summary of Morton’s data comparing Caucasian skulls to those of Native
Americans.”’ According to a ¢ test, the difference between these two samples is
“statistically significant” (P-value < 0.001). But is it meaningful?

Table 7.4.3 Cranial capacity (in’)

Caucasian Native American

Mean 87 82
SD 8 10
n 52 144

In the first place, the notion that cranial capacity is a measure of intelligence is
no longer taken seriously. Leaving that question aside, one can still ask whether it
is true that the mean cranial capacity of Native Americans is less than that of
Caucasians. Such an inference beyond the actual data requires that the data be
viewed as random samples from their respective populations. Of course, in actual-
ity, Morton’s data are not random samples but “samples of convenience,” because
Morton measured those skulls that he happened to obtain. But might the data be
viewed “as if” they were generated by random sampling? One way to approach
this question is to look for sources of bias. In 1977, the noted biologist Stephen Jay
Gould reexamined Morton’s data with this goal in mind, and indeed Gould found
several sources of bias. For instance, the 144 Native American skulls represent
many different groups of Native Americans; as it happens, 25% of the skulls (that
is, 36 of them) were from Inca Peruvians, who were a small-boned people with
small skulls, while relatively few were from large-skulled tribes such as the Iro-
quois. Clearly a comparison between Native Americans and Caucasians is mean-
ingless unless somehow adjusted for such imbalances. When Gould made such an
adjustment, he found that the difference between Native Americans and Cau-
casians vanished. [

Even though the story of Morton’s skulls is more than 100 years old, it can still serve
to alert us to the pitfalls of inference. Morton was a conscientious researcher and
took great care to make accurate measurements; Gould’s reexamination did not
reveal any suggestion of conscious fraud on Morton’s part. Morton may have over-
looked the biases in his data because they were invisible biases; that is, they related
to aspects of the selection process rather than aspects of the measurements
themselves.

When we look at a set of observational data, we can sometimes become so hyp-
notized by its apparent solidity and objectivity that we forget to ask how the obser-
vational units—the persons or things that were observed—were selected. The
question should always be asked. If the selection was haphazard rather than truly
random, the results can be severely distorted.
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Example
7.4.5

Figure 7.4.1 Schematic
representation of causation
(a) and of confounding (b)

Example
7.4.6

Confounding

Many observational studies are aimed at discovering some kind of causal relation-
ship. Such discovery can be very difficult because of extraneous variables that enter
in an uncontrolled (and perhaps unknown) way. The investigator must be guided by
the maxim:

Association is not causation.

For instance, it is known that some populations whose diets are high in fiber
enjoy a reduced incidence of colon cancer. But this observation does not in itself
show that it is the high-fiber diet, rather than some other factor, that provides the
protection against colon cancer.

The following example shows how uncontrolled extraneous variables can cloud
an observational study, and what kinds of steps can be taken to clarify the picture.

Smoking and Birthweight In a large observational study of pregnant women, it was
found that the women who smoked cigarettes tended to have smaller babies than
the nonsmokers.'? (This study was mentioned in Example 7.4.3.) It is plausible that
smoking could cause a reduction in birthweight, for instance, by interfering with the
flow of oxygen and nutrients across the placenta. But of course plausibility is
not proof. In fact, the investigators found that the smokers differed from the non-
smokers with respect to many other variables. For instance, the smokers drank more
whiskey than the nonsmokers. Alcohol consumption might plausibly be linked to a
deficit in growth. [

In Example 7.4.5 three variables are presented; let us refer to these as
X = smoking, Y = birthweight, and Z = alcohol consumption. There is an associ-
ation between X and Y, but is there a causal link between them? Or is there a causal
link between Z and Y? Figure 7.4.1 gives a schematic representation of the situa-
tion. Changes in X are associated with changes in Y. However, changes in Z are also
associated with changes in Y. We say that the effect that X has on Y is confounded
with the effect that Z has on Y. In the context of Example 7.4.5, we say that the
effect that smoking has on birthweight is confounded with the effect that alcohol
consumption has on birthweight. In observational studies, confounding of effects is
a common problem.

(a) (b) The effect of X on Y is confounded
with the effect of Zon Y

Smoking and Birthweight The study presented in Example 7.4.5 uncovered many
confounding variables. For example, the smokers drank more coffee than the non-
smokers. In addition—and this is especially puzzling—it was found that the smokers
began to menstruate at younger ages than the nonsmokers. This phenomenon (early
onset of menstruation) could not possibly have been caused by smoking, because it
occurred (in almost all instances) before the woman began to smoke. One interpre-
tation that has been proposed is that the two populations—women who choose to
smoke and those who do not—are different in some biological way; thus, it has been
suggested that the reduced birthweight is due “to the smoker, not the smoking.”*!
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A number of more recent studies have attempted to shed some light on the
relationship between maternal smoking and infant development. Researchers in
one study observed, in addition to smoking habits, about 50 extraneous variables,
including the mother’s age, weight, height, blood type, upper arm circumference,
religion, education, income, and so on.?? After applying complex statistical methods
of adjustment, they concluded that birthweight varies with smoking even when
these extraneous factors are held constant. This says that there quite likely is a link
between X = smoking and Y = birthweight as shown in Figure 7.4.1, although
several other variables also affect birthweight. The point is that the presence of con-
founding doesn’t mean that a link does not exist between X and Y, only that it is
tangled up with other effects, so that we have to be cautious when interpreting the
findings of an observational study.

In another study of pregnant women, researchers measured various quantities
related to the functioning of the placenta.”? They found that, compared to non-
smokers, women who smoked had more abnormalities of the placenta, and that
their infants had very much higher blood levels of cotinine, a substance derived
from nicotine. They also found evidence that, in the women who smoked, the circu-
lation of blood in the placenta was notably improved by abstaining from smoking
for three hours.

A third study used a matched design to try to isolate the effect of smoking
behavior. The investigators identified 159 women who had smoked during one preg-
nancy but quit smoking before the next pregnancy.’* These women were individ-
ually matched with 159 women who smoked during two consecutive pregnancies;
pairs were matched with respect to the birthweight of the first child, amount of
smoking during the first pregnancy, and several other factors. Thus, the members of
a pair were believed to have identical “reproductive potential.” The researchers
then considered the birthweight of the second child; they found that the women who
had quit smoking gave birth to infants who weighed more than the infants of their
matched controls who continued to smoke. Of course, we cannot rule out the possi-
bility that the women who quit smoking also quit other harmful habits, such as
drinking too much alcohol, and that the increased birthweight was not really caused
by giving up smoking. [

Example 7.4.6 shows that observational studies can provide information about
causality but must be interpreted cautiously. Researchers generally agree that a
causal interpretation of an observed association requires extra support—for
instance, that the association be observed consistently in observational studies con-
ducted under various conditions and taking various extraneous factors into account,
and also, ideally, that the causal link be supported by experimental evidence. We do
not mean to say that an observed association cannot be causally interpreted, but
only that such interpretation requires particular caution.

Spurious Association

Ultrasound Tt is quite common for a physician to use ultrasound examination of the
fetus of a pregnant woman. However, when ultrasound technology was first used,
there were concerns that the procedure might be harmful to the baby. An early
study seemed to bear this out: On average, babies exposed to ultrasound in the
womb were lighter at birth than were babies not exposed to ultrasound.” Later, a
study was done in which some women were randomly chosen to have ultrasounds
and others were not given ultrasounds. This study found no difference in birthweight
between the two groups.?® It seems that the reason a difference appeared in the first
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Figure 7.4.2 Schematic

representation of spurious

association

Example

7.4.8

study was that ultrasound was being used mostly for women who were experiencing
problem pregnancies. The complications with the pregnancy were leading to low
birthweight, not the use of ultrasound. [

Figure 7.4.2 gives a schematic representation of the situation in Example 7.4.7.
Changes in X (having an ultrasound examination) are associated with changes in Y’
(lower birthweight). However, X and Y are both dependent on a third variable Z
(whether or not there are problems with the pregnancy), which is the variable that is
driving the relationship. Changes in X and changes in Y are a common response to
the third variable Z. We say that the association between X and Y is spurious: When
we control for the “lurking variable” Z, the link between X and Y disappears. In the
case of Example 7.4.7, it was not having an ultrasound that influenced birthweight;
what mattered was whether or not there were problems with the pregnancy.

The association between X and Y is spurious; controlling for the
lurking variable Z eliminates the X-Y link.

More on Experiments

An experiment is a study in which the researcher intervenes and imposes treatment
conditions. The following is a simple example.

Headache Pain Suppose a researcher gives ibuprofen to some people who have
headaches and aspirin to others and then measures how long it takes for each
person’s headache to disappear. In this case, there are two treatments: ibuprofen
and aspirin. By assigning people to treatment groups—ibuprofen and aspirin—the
researcher is conducting an experiment. m

When we are discussing an experiment, we refer to the units to which the treatments
are assigned as experimental units. In an agricultural experiment, an experimental
unit might be a plot of land. In general, an experimental unit is the smallest unit to
which a treatment is applied in an experiment. Thus, in Example 7.4.8 the experi-
mental units are individual people, since treatment is assigned on a person-by-
person basis.

If treatments are assigned at random, for example, by tossing a coin and letting
heads mean the person gets ibuprofen, while tails means the person gets aspirin,
then the experiment is a randomized experiment. Sometimes an experiment is con-
ducted in which one group is given a treatment and a second—the control group—
is given nothing. For example, one could investigate the effectiveness of ibuprofen in
treating headache pain by giving it to some people, while giving no painkiller to
others. In contrast, the experiment in which some people are given ibuprofen and
others are given aspirin is said to have an “active” control —the aspirin group.

Randomization Distributions

In Section 5.2 we developed the concept of a sampling distribution for the sample
mean, Y, by considering how Y varies from one random sample to another. Strictly
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speaking, this provides the foundation for inference when analyzing an observation-
al study, but not when the data arise from an experiment—in which treatments are
assigned to experimental units, rather than a random sample being taken from a
population. However, the concepts of Section 5.2 can be extended in a natural way
to develop the randomization distribution of Y, which is the distribution that Y
takes on under all possible random assignments within an experiment. Randomiza-
tion distributions then form the foundation for inference for experiments.

Only Statistical?

The term “statistical” is sometimes used—or, rather, misused—as an epithet. For
instance, some people say that the evidence linking dietary cholesterol and heart
disease is “only statistical.” What they really mean is “only observational.” Statistical
evidence can be very strong indeed, if it flows from a randomized experiment rather
than an observational study. As we have seen in the preceding examples, statistical
evidence from an observational study must be interpreted with great care, because
of potential distortions caused by extraneous variables.

Exercises 7.4.1-7.4.9

7.4.1 In 2005, 5.3% of the deaths in the United States
were caused by chronic lower respiratory diseases (e.g.,
asthma and emphysema). In Arizona, 6.2% of deaths
were due to chronic lower respiratory diseases.”’ Does
this mean that living in Arizona exacerbates respiratory
problems? If not, how can we explain the Arizona rate
being above the national rate?

7.4.2 It has been hypothesized that silicone breast im-
plants cause illness. In one study it was found that women
with implants were more likely to smoke, to be heavy
drinkers, to use hair dye, and to have had an abortion
than were women in a comparison group who did not
have implants.”® Use the language of statistics to explain
why this study casts doubt on the claim that implants
cause illness.

7.4.3 Consider the setting of Exercise 7.4.2.

(a) What is the explanatory variable?

(b) What is the response variable?

(c) What are the observational units?

74.4 In a study of 1,040 subjects, researchers found
that the prevalence of coronary heart disease increased

as the number of cups of coffee consumed per day
increased.”’

(a) What is the explanatory variable?

(b) What is the response variable?

(c) What are the observational units?

7.4.5 For an early study of the relationship between diet

and heart disease, the investigator obtained data on heart
disease mortality in various countries and on national

average dietary compositions in the same countries. The
accompanying graph shows, for six countries, the
1948-1949 death rate from degenerative heart disease
(among men aged 55-59 years) plotted against the
amount of fat in the diet.*°

In what ways might this graph be misleading? Which
extraneous variables might be relevant here? Discuss.
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—
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7.4.6 Shortly before Valentine’s Day in 1999, a newspa-
per article was printed with the headline “Marriage
makes for healthier, longer life, studies show.” The head-
line was based on studies that showed that married
persons live longer and have lower rates of cancer, heart
disease, and stroke than do those who never marry.>! Use
the language of statistics to discuss the headline. Use a
schematic diagram similar to Figure 7.4.1 or Figure 7.4.2
to support your explanation of the situation.
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7.4.7 In June 2009, the New York Times published an
article entitled “Alcohol’s Good for You? Some Scien-
tists Doubt It.” The author wrote, “Study after study
suggests that alcohol in moderation may promote heart
health and even ward off diabetes and dementia. The
evidence is so plentiful that some experts consider
moderate drinking—about one drink a day for women,
about two for men—a central component of a healthy
lifestyle.” Later in the article, the author wrote, “For
some scientists, the question will not go away. No
study, these critics say, has ever proved a causal rela-
tionship between moderate drinking and lower risk of
death.” Explain using the language of statistics and a
schematic diagram similar to Figure 7.4.1 or Figure
7.4.2 why the critics say no study has ever proved a
causal relationship.

7.4.8 In a study of the relationship between birthweight
and race, birth records of babies born in Illinois were
examined. The researchers found that the percentage of
low birthweight babies among babies born to U.S.-born
white women was much lower than the percentage of
low birthweight babies among babies born to U.S.-born
black women. This suggests that race plays an impor-
tant role in determining the chance that a baby will
have a low birthweight. However, the percentage of low
birthweight babies among babies born to African-born
black women was roughly equal to the percentage
among babies born to U.S.-born white women.??> Use
the language of statistics to discuss what these data say
about the relationships between low birthweight, race,
and mother’s birthplace. Use a schematic diagram
similar to Figure 7.4.1 or Figure 7.4.2 to support your
explanation.

7.4.9 Does the release of a Harry Potter book lead chil-
dren to spend more time reading and thus reduce the
number of accidents they have? Doctors in England
compared the number of emergency room visits due to

musculoskeletal injuries to children aged 7 to 15 during
two types of weekends: (1) following the release dates of
two books in the Harry Potter series and (2) during 24
“control” weekends, for one hospital. The following table
shows the data, with the “Harry Potter weekends” in
italics.

WEEKEND INJURIES WEEKEND INJURIES
6/7/03 63 7/10/04 57
6/14/03 77 7/17/04 66
6/21/03 36* 7/24/04 62
6/28/03 63 6/4/05 51
7/5/03 75 6/11/05 83
7/12/03 71 6/18/05 60
7/19/03 60 6/25/05 66
7/26/03 52 7/2/05 74
6/5/04 78 7/9/05 75
6/12/04 84 7/16/05 37%*
6/19/04 70 7/23/05 46
6/26/04 75 7/30/05 68
7/3/04 81 8/6/05 60

(a) Given the nature of the data, can we make an infer-
ence about the release of Harry Potter books causing
a change in accidents? Why or why not?

(b) The average for the Harry Potter weekends is 36.5,
with a standard deviation of 0.7. The corresponding
numbers for the other (control) weekends are 67.4
and 10.4. Use a ¢ test to investigate the claim that the
small number of injuries during Harry Potter week-
ends is consistent with chance variation. Use
a = 0.01. [Note: Formula (6.7.1) yields 23.9 degrees
of freedom for these data.]

7.5 One-Tailed ¢ Tests

The ¢ test described in the preceding sections is called a two-tailed ¢ test or a two-
sided 7 test because the null hypothesis is rejected if ¢, falls in either tail of the
Student’s ¢ distribution and the P-value of the data is a two-tailed area under
Student’s # curve. A two-tailed ¢ test is used to test the null hypothesis

Hy:py = po

against the alternative hypothesis

Hp:py # o

This alternative H 4 is called a nondirectional alternative.
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Directional Alternative Hypotheses

In some studies it is apparent from the beginning—before the data are collected—
that there is only one reasonable direction of deviation from H,,. In such situations it
is appropriate to formulate a directional alternative hypothesis. The following is a
directional alternative:

H gty < o
Another directional alternative is

Hap > mo

The following two examples illustrate situations where directional alternatives are
appropriate.

Niacin Supplementation Consider a feeding experiment with lambs. The observation
Y will be weight gain in a two-week trial. Ten animals will receive diet 1, and 10 ani-
mals will receive diet 2, where

Diet 1 = Standard ration + Niacin
Diet 2 = Standard ration
On biological grounds it is expected that niacin may increase weight gain; there is no
reason to suspect that it could possibly decrease weight gain. An appropriate formu-
lation would be
Hy: Niacin is not effective in increasing weight gain (u; = u,).

H 4:Niacin is effective in increasing weight gain (u; > u,). [

Hair Dye and Cancer Suppose a certain hair dye is to be tested to determine whether
it is carcinogenic (cancer causing). The dye will be painted on the skins of 20 mice
(group 1), and an inert substance will be painted on the skins of 20 mice (group 2)
that will serve as controls. The observation Y will be the number of tumors appear-
ing on each mouse. An appropriate formulation is

Hy: The dye is not carcinogenic (@ = uy).
H ,: The dye is carcinogenic (u; > w,). m

Note: If H, is directional, then some people would rewrite H, to include the
“opposite direction.” For example, if H, is H 4: 1 > p,, then we could write H as
H: ni = py.Thus, the null hypothesis is stating that the mean of population 1 is not
greater than the mean of population 2, whereas the alternative hypothesis asserts
that the mean of population 1 is greater than the mean of population 2. Between
these two hypotheses, all possibilities are covered.

The One-Tailed Test Procedure

When the alternative hypothesis is directional, the ¢ test procedure must be modi-
fied. The modified procedure is called a one-tailed ¢ test and is carried out in two
steps as follows:

Step 1 Check directionality —see if the data deviate from H in the direction spec-
ified by H 4:
(a) If not, the P-value is greater than 0.50.
(b) If so, proceed to step 2.
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Step 2 The P-value of the data is the one-tailed area beyond .

To conclude the test, one can make a decision at a prespecified significance level
a: Hyis rejected if P-value = a.

The rationale of the two-step procedure is that the P-value measures devia-
tion from H, in the direction specified by H,. The one-tailed P-value is illustrat-
ed in Figure 7.5.1 for two cases in which the data deviate from H, in the direction
specified by H,. Figure 7.5.2 illustrates the P-value for (a) a case in which the
data are consistent with H 4: u; > u, and (b) a case in which the data are incon-
sistent with H 4: u; > u,. The two-step testing procedure is demonstrated in
Example 7.5.3.

Shaded y\ Shaded area = P-value
I I

—i Is

(a) (b)

Figure 7.5.1 One-tailed P-value for a t test, (a) if the alternative is H 4: u; < p,
and 1, is negative; (b) if the alternative is H 4: u; > u, and ¢ is positive

P-value < 0.05 P-value > 0.50
§ g T g g
t 0 t

I
0 10,05 10,05

t

s

t

A
(a) Data consistent with H 4: u; > u, (b) Data inconsistent with H 4: ;> u,

Figure 7.5.2 One-tailed P-value for a ¢ test, (a) in which the data are consistent
with H 4: w1 > wo; (b) in which the data are inconsistent with H 4: u; > u,

Example Niacin Supplementation Consider the lamb feeding experiment of Example 7.5.1. The
75.3 alternative hypothesis is

Hp:py > o

We will claim significant evidence for H 4 if Y is sufficiently greater than Y,. Sup-
pose formula (6.7.1) yields df = 18.The critical values from Table 4 are reproduced
in Table 7.5.1.

Table 7.5.1 Critical values with df = 18

Tail area 0.20 0.10 0.05 0.04 0.03 0.025 0.02 0.01 0.005 0.0005
Critical value 0.862 1.330 1.734 1.855 2.007 2.101 2214 2.552 2.878 3.922
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To illustrate the one-tailed test procedure, suppose that we have
SE(?lfyz) =221b

and that we choose « = 0.05. Let us consider various possibilities for the two
sample means.

(a) Suppose the data give y; = 101b and y, = 13 Ib. This deviation from H, is
opposite to the assertion of H 4: We have y; < y,,but H 4 asserts that w; > u.,.
Consequently, P-value > 0.50, so we would not find significant evidence for
H , at any significance level. (We would never use an « greater than 0.50.) We
conclude that the data provide no evidence that niacin is effective in increas-
ing weight gain.

(b) Suppose the data give y; = 141b and y, = 10 Ib. This deviation from H, is
in the direction of H, (because y; > ¥,), so we proceed to step 2. The value
of ¢, is

_ (14 -10) = 0

1 > = 1.82

The (one-tailed) P-value for the test is the probability of getting a ¢ statis-
tic, with 18 degrees of freedom, that is as large or larger than 1.82. This upper
tail probability (found with a computer) is 0.043, as shown in Figure 7.5.3.

Figure 7.5.3 One-tailed
P-value for the ¢ test in
Example 7.5.3

P-value =0.043

If we did not have a computer or graphing calculator available, we could
use Table 4 to bracket the P-value. From Table 4, we see that the P-value
would be bracketed as follows:

0.04 < one-tailed P-value < 0.05
Since P-value < «, we reject H and conclude that there is some evidence
that niacin is effective.

(c) Suppose the data give y; = 111b and y, = 101b. Then, proceeding as in
part (b), we compute the test statistic as ¢, = 0.45.The P-value is 0.329.

If we did not have a computer or graphing calculator available, we could use Table 4
to bracket the P-value as

P-value > 0.20

Since P-value > «, we do not find significant evidence for H 4; we conclude that
there is insufficient evidence to claim that niacin is effective. Thus, although these
data deviate from H, in the direction of H,, the amount of deviation is not great
enough to justify significant evidence for H 4. =



254 Chapter 7 Comparison of Two Independent Samples

Example
7.5.4

Figure 7.5.4 Two-tailed
P-value for the ¢ test in
Example 7.5.4

Notice that what distinguishes a one-tailed from a two-tailed ¢ test is the way in
which the P-value is determined, but not the directionality or nondirectionality of
the conclusion. If we find significant evidence for H 4, our conclusion may be consid-
ered directional even if our H, is nondirectional.* (For instance, in Example 7.2.4
we concluded that toluene increases NE concentration.)

Directional versus Nondirectional Alternatives

The same data will give a different P-value depending on whether the alternative
hypothesis is directional or nondirectional. Indeed, if the data deviate from H,
in the direction specified by H 4, the P-value for a directional alternative hypoth-
esis will be 1/2 of the P-value for the test that uses a nondirectional alternative. It
can happen that the same data will provide significant evidence for H, using the
one-tailed procedure but not using the two-tailed procedure, as Example 7.5.4
shows.

Niacin Supplementation Consider part (b) of Example 7.5.3. In that example we
chose a = 0.05 and tested

Ho: py = po
against the directional alternative hypothesis
Hypy > o

With y; = 14 1b and y, = 10 Ib, the test statistic was ¢, = 1.82 and the P-value was
0.043, as indicated in Figure 7.5.3. Our conclusion was to claim there is significant
evidence for H 4.

However, suppose we had wished to test

Ho: py = po
against the nondirectional alternative hypothesis
Hppy # po

With the same data of y; = 14 1b and y, = 10 Ib, the test statistic is still z;, = 1.82.
The P-value, however, is 0.086, as shown in Figure 7.5.4. Thus, P-value > « and we
do not reject H,,.

P-value = 0.086

Area=0.043 Area=0.043

1, =1.82 —t,=-1.82

*Some authors prefer not to draw a directional conclusion if H 4 is nondirectional.
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Hence, the one-tailed procedure finds significant evidence for H 4, but the two-
tailed procedure does not. In this sense, it is “easier” to claim that the evidence
significantly supports H, with the one-tailed procedure than with the two-tailed
procedure. [

Why is the two-tailed P-value cut in half when the alternative hypothesis is
directional? In Example 7.5.4, the researcher would conclude by saying, “The data
suggest that niacin increases weight gain. But if niacin has no effect, then the kind of
data I got in my experiment—having two sample means that differ by 1.82 SEs or
more—would happen fairly often (P-value = 0.086). Sometimes the niacin diet
would come out on top; sometimes the standard diet would come out on top. I can-
not find significant evidence for H 4 on the basis of what I have seen in these data.”
In Example 7.5.3(b), the researcher would conclude by saying, “Before the experi-
ment was run, 1 suspected that niacin increases weight gain. The data provide
evidence in support of this theory. If niacin has no effect, then the kind of data I got
in my experiment—having the niacin diet sample mean exceed the standard diet
that differ by 1.82 SEs or more —would rarely happen (P-value 0.043). (Before the
experiment was run I dismissed the possibility that the niacin diet mean could be
less than the standard diet mean.) Thus, I can claim my evidence significantly
supports H 4.” The researcher in Example 7.5.3(b) is using two sources of informa-
tion to claim the significance of evidence for H 4: (1) what the data have to say (as
measured by the tail area) and (2) previous expectations (which allow the
researcher to ignore the lower tail area—the 0.043 area under the curve below
—1.82 in Figure 7.5.4).

Note that the modification in procedure, when going from a two-tailed to a one-
tailed test, preserves the interpretation of significance level « as given in Section 7.3,
that is,

a = Pr{reject H} if His true

For instance, consider the case a = 0.05. Figure 7.5.5 shows that the total shaded
area—the probability of rejecting Hy,—is equal to 0.05 in both a two-tailed test and
a one-tailed test. This means that, if a great many investigators were to test a
true H,, then 5% of them would find significant evidence for H, and commit a
Type I error; this statement is true whether the alternative H, is directional or
nondirectional.

The crucial point in justification of the modified procedure for testing against a
directional H 4 is that if the direction of deviation of the data from H, is not as spec-
ified by H 4, then we will not claim that the evidence significantly supports H 4. For
example, in the carcinogenesis experiment of Example 7.5.2, if the mice exposed to
the hair dye had fewer tumors than the control group, we might (1) simply conclude

Area =0.025 Area =0.025 Area=0.05

1 I [ : I [
—lo.025 0 10,025 t 0 10,05 t

(a) Nondirectional H 4: u; # po (b) Directional H 4: uy >y

Figure 7.5.5 Two-tailed and one-tailed 7 test with & = 0.05. The data provide
significant evidence for H 4 if ¢, falls in the hatched region of the 7-axis
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that the data do not indicate a carcinogenic effect, or (2) if the exposed group had
substantially fewer tumors, so that the test statistic ¢, was very far in the wrong tail of
the ¢ distribution, we might look for methodological errors in the experiment—for
example, mistakes in lab technique or in recording the data, nonrandom allocation
of the mice to the two groups, and so on—but we would not claim significant
evidence for H 4.

A one-tailed ¢ test is especially natural when only one direction of deviation
from H, is believed to be plausible. However, one-tailed tests are also used in situa-
tions where deviation in both directions is possible, but only one direction is of
interest. For instance, in the niacin experiment of Example 7.5.3, it is not necessary
that the experimenter believe that it is impossible for niacin to reduce weight gain
rather than increase it. Deviations in the wrong direction (less weight gain on
niacin) would not lead to claiming there is significant evidence for H 4, and thus we
would not make claims about the effect of niacin; this is the essential feature that
distinguishes a directional from a nondirectional formulation.

Choosing the Form of Hy

When is it legitimate to use a directional H 4, and so to perform a one-tailed test?
The answer to this question is linked to the directionality check —step 1 of the two-
step test procedure given previously. Clearly such a check makes sense only if H4
was formulated before the data were inspected. (If we were to formulate a direc-
tional H 4 that was “inspired” by the data, then of course the data would always
deviate from H, in the “right” direction and the test procedure would always
proceed to step 2.) This is the rationale for the following rule.

Rule for Directional Alternatives

It is legitimate to use a directional alternative H, only if H, is formulated
before seeing the data and there is no scientific interest in results that deviate in
a manner opposite to that specified by H 4.

In research, investigators often get more pleasure from finding significant
evidence for an alternative hypothesis than not finding evidence. In fact, research
reports often contain phrases such as “we are unable to find significant evidence for
the alternative hypothesis” or “the results failed to reach statistical significance.”
Under these circumstances, one might wonder what the consequences would be if
researchers succumbed to the natural temptation to ignore the preceding rule for
using directional alternatives. After all, very often one can think of a rationale for an
effect ex post facto—that is, after the effect has been observed. A return to the imag-
inary experiment on plants’ musical tastes will illustrate this situation.

Music and Marigolds Recall the imaginary experiment of Example 7.3.2, in which
investigators measure the heights of marigolds exposed to Bach or Mozart.
Suppose, as before, that the null hypothesis is true, that df = 60, and that the inves-
tigators all perform ¢ tests at « = 0.05. Now suppose in addition that all of the inves-
tigators violate the rule for use of directional alternatives, and that they formulate
H , after seeing the data. Half of the investigators would obtain data for which
Y1 > ¥,, and they would formulate the alternative

H 4: 1 > p, (plants prefer Bach)
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The other half would obtain data for which y; < y,, and they would formulate the
alternative

H 4 py < p, (plants prefer Mozart)

Now envision what would happen. Since the investigators are using directional
alternatives, they will all compute P-values using only one tail of the distribution.
We would expect them to have the following experiences:

90% of them would get a ¢, in the middle 90% of the distribution and would not
find significant evidence for H 4.

5% of them would get a ¢, in the top 5% of the distribution and would conclude
that the plants prefer Bach.

5% of them would get a ¢, in the bottom 5% of the distribution and would con-
clude that the plants prefer Mozart.

Thus, a total of 10% of the investigators would claim there is significant evidence for
H 4. Of course each investigator individually never realizes that the overall percent-
age of Type I errors is 10% rather than 5%. And the conclusions that plants prefer
Bach or Mozart could be supported by ex post facto rationales that would be limited
only by the imagination of the investigators. m

As Example 7.5.5 illustrates, a researcher who uses a directional alternative
when it is not justified pays the price of a doubled risk of Type I error. Moreover,
those who read the researcher’s report will not be aware of this doubling of risk,
which is why some scientists advocate never using a directional alternative.

Exercises 7.5.1-7.5.13

7.5.1 For each of the following data sets, use Table 4 to
bracket the one-tailed P-value of the data as analyzed by
the ¢ test, assuming that the alternative hypothesis is

Hy:py > po.

(2) SAMPLE | SAMPLE 2
n 10 10
y 10.8 10.5

SEwv, v, = 0.23 with df = 18

(b) SAMPLE I  SAMPLE 2
n 100 100
y 750 730

SEw,-v, = 11 with df = 180

7.5.2 For each of the following data sets, use Table 4 to
bracket the one-tailed P-value of the data as analyzed by
the ¢ test, assuming that the alternative hypothesis is

H g py > o

(a) SAMPLE | SAMPLE 2
n 10 10
y 3.4 3.00

SEy, v, = 0.61 with df = 17

(b) SAMPLE | SAMPLE 2
n 6 5
5 560 500

SEwy,-v,) = 45 withdf = 8

(c) SAMPLE | SAMPLE 2
n 20 20
5 73 79

SEy,_y,) = 2.8 with df = 35
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7.5.3 For each of the following situations, suppose
Hy: nuy = w, is being tested against H 4: u; > w,. State
whether or not there is significant evidence for H .

(a) t, = 3.75 with 19 degrees of freedom, &« = 0.01.

(b) t, = 2.6 with 5 degrees of freedom, @ = 0.10.

(c) t, = 2.1 with 7 degrees of freedom, @ = 0.05.

(d) ¢, = 1.8 with 7 degrees of freedom, & = 0.05.

7.5.4 For each of the following situations, suppose
Hy: puy = p, is being tested against H 4: u; < p,. State
whether or not there is significant evidence for H 4.

(a) t; = —1.6 with 23 degrees of freedom, « = 0.05.

(b) t;, = —2.3 with 5 degrees of freedom, « = 0.10.

(c) t, = 0.4 with 16 degrees of freedom, @ = 0.10.

(d) t, = —2.8 with 27 degrees of freedom, « = 0.01.

7.5.5 Ecological researchers measured the concentration
of red cells in the blood of 27 field-caught lizards
(Sceloporis occidetitalis). In addition, they examined each
lizard for infection by the malarial parasite Plasmodium.
The red cell counts (107 X cells per mm®) were as
reported in the table.*

INFECTED NONINFECTED
ANIMALS ANIMALS

n 12 15

y 972.1 843.4

s 2451 251.2

One might expect that malaria would reduce the red cell
count, and in fact previous research with another lizard
species had shown such an effect. Do the data support
this expectation? Assume that the data are normally dis-
tributed. Test the null hypothesis of no difference against
the alternative that the infected population has a lower
red cell count. Use a ¢ test at

(a) a =0.05
(b) @ =0.10
[Note: Formula (6.7.1) yields 24 df.]

7.5.6 A study was undertaken to compare the respiratory
responses of hypnotized and nonhypnotized subjects to
certain instructions. The 16 male volunteers were allocat-
ed at random to an experimental group to be hypnotized
or to a control group. Baseline measurements were taken
at the start of the experiment. In analyzing the data, the
researchers noticed that the baseline breathing patterns
of the two groups were different; this was surprising, since
all the subjects had been treated the same up to that time.
One explanation proposed for this unexpected difference
was that the experimental group were more excited in
anticipation of the experience of being hypnotized. The
accompanying table presents a summary of the baseline
measurements of total ventilation (liters of air per

minute per square meter of body area). Parallel dotplots
of the data are given in the following graph.*® [Note: For-
mula (6.7.1) yields 14 df.]

EXPERIMENTAL CONTROL
5.32 4.50
5.60 4.78
5.74 4.79
6.06 4.86
6.32 5.41
6.34 5.70
6.79 6.08
7.18 6.21
n 8 8
y 6.169 5.291
s 0.621 0.652
7.0
6.5
E L]
£ 60— *
= °
= 55
5 . °
>
5.0 —
4.5 — o
I I
Experimental Control

(a) Use a ¢ test to test the hypothesis of no difference
against a nondirectional alternative. Let & = 0.05.

(b) Use a ¢ test to test the hypothesis of no difference
against the alternative that the experimental condi-
tions produce a larger mean than the control condi-
tions. Let a = 0.05.

(c) Which of the two tests, that of part (a) or part (b), is
more appropriate? Explain.

7.5.7 In a study of lettuce growth, 10 seedlings were ran-
domly allocated to be grown in either standard nutrient
solution or in a solution containing extra nitrogen. After
22 days of growth, the plants were harvested and
weighed, with the results given in the table.’” Are the
data sufficient to conclude that the extra nitrogen



enhances plant growth under these conditions? Use a ¢
test at o = 0.10 against a directional alternative.
(Assume that the data are normally distributed.) [Note:
Formula (6.7.1) yields 7.7 df.]

LEAF DRY WEIGHT (GM)

NUTRIENT

SOLUTION n MEAN SD
Standard 5 3.62 0.54
Extra nitrogen 5 4.17 0.67

7.5.8 Research has shown that for mammals giving
birth to a son versus a daughter places a greater strain
on mothers. Does this affect the health of their next
child? A study compared the birthweights of humans
born after a male versus after a female. Summary statis-
tics for the sample of size 76 are given in the followin%
table; the data appeared to be normally distributed.’
Use a t test, with « = 0.05 and a directional alternative,
to investigate the research hypothesis that birthweight
is lower when the elder sibling is male. [Note: Formula
(6.7.1) yields 69.5 df.]

BIRTHWEIGHT (KG)

SEX OF ELDER

SIBLING n MEAN SD
Male 33 3.32 0.62
Female 43 3.63 0.63

7.5.9 An entomologist conducted an experiment to see if
wounding a tomato plant would induce changes that im-
prove its defense against insect attack. She grew larvae of
the tobacco hornworm (Manduca sexta) on wounded
plants or control plants. The accompanying table shows
the wei%hts (mg) of the larvae after seven days of
growth.” (Assume that the data are normally distrib-
uted.) How strongly do the data support the researcher’s
expectation? Use a ¢ test at the 5% significance level. Let
H , be that wounding the plant tends to diminish larval
growth. [Note: Formula (6.7.1) yields 31.8 df.]

WOUNDED CONTROL
n 16 18
y 28.66 37.96
s 9.02 11.14

7.5.10 A pain-killing drug was tested for efficacy in 50
women who were experiencing uterine cramping pain
following childbirth. Twenty-five of the women were
randomly allocated to receive the drug, and the remain-
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ing 25 received a placebo (inert substance). Capsules of
drug or placebo were given before breakfast and again at
noon. A pain relief score, based on hourly questioning
throughout the day, was computed for each woman. The
possible pain relief scores ranged from 0 (no relief) to 56
(complete relief for 8 hours). Summary results are shown
in the table.*) [Note: Formula (6.7.1) yields 47.2 df ]

PAIN RELIEF SCORE

TREATMENT n MEAN SD
Drug 25 31.96 12.05
Placebo 25 25.32 13.78

(a) Test for evidence of efficacy using a ¢ test. Use a
directional alternative and & = 0.05.

(b) If the alternative hypothesis were nondirectional,
how would the answer to part (a) change?

7.5.11 Postoperative ileus (POI) is a form of gastroin-
testinal dysfunction that commonly occurs after
abdominal surgery and results in absent or delayed gas-
trointestinal motility. Does rocking in a chair after
abdominal surgery reduce postoperative ileus (POI)
duration? Sixty-six postoperative abdominal surgery
patients were randomly divided into two groups. The
experimental group (n = 34) received standard care plus
the use of a rocking chair while the control group
(n = 32) received only standard care. For each patient,
the postoperative time until first flatus (days) (an indica-
tion that the POI has ended) was measured. The results
are tabulated here.*!

TIME UNTIL FIRST
FLATUS (DAYS)

n MEAN (DAYS) sD
Rocking 34 3.16 0.86
Control 32 3.88 0.80

(a) Is there evidence that use of the rocking chair
reduces POI duration (i.e., the time until first flatus)?
Use a t test with a directional alternative with
a = 0.05.

(b) While the researchers hypothesized that the use of a
rocking chair could reduce POI duration, it is not
unreasonable to hypothesize that the use of a rock-
ing chair could increase POI duration. Based on this
possibility, discuss the appropriateness of using a
directional versus nondirectional test. (Hint: Con-
sider what medical recommendations might be made
based on this research.)

75.12 In Example 7.26 we considered testing
H: ny = u, against the nondirectional alternative hypo-
thesis H 4: uq # u, and found that the P-value could be
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bracketed as 0.06 < P-value < 0.10. Recall that the
sample mean for the group 1 (the control group) was
15.9, which was less than the sample mean of 11.0 for
group 2 (the group treated with Ancymidol). However,
Ancymidol is considered to be a growth inhibitor, which
means that one would expect the control group to have a
larger mean than the treatment group if ancy has any
effect on the type of plant being studied (in this case, the
Wisconsin Fast Plant). Suppose the researcher had
expected ancy to retard growth—before conducting the
experiment—and had conducted a test of Hy: g = o
against the nondirectional alternative hypothesis H 4:
M1 > o, using o = 0.05. What would be the bounds on
the P-value? Would H, be rejected? Why or why not?
What would be the conclusion of the experiment? (Note:
This problem requires almost no calculation.)

7.5.13 (Computer exercise) An ecologist studied the
habitat of a marine reef fish, the six bar wrasse
(Thalassoma hardwicke), near an island in French Poly-
nesia that is surrounded by a barrier reef. He examined
48 patch reef settlements at each of two distances from
the reef crest: 250 meters from the crest and 800 meters
from the crest. For each patch reef, he calculated the “set-
tler density,” which is the number of settlers (juvenile
fish) per unit of settlement habitat. Before collecting the
data, he hypothesized that the settler density might
decrease as distance from the reef crest increased, since
the way that waves break over the reef crest causes
resources (i.e., food) to tend to decrease as distance from
the reef crest increases. Here are the data:*?

250 METERS 800 METERS
0318 0.758 0.318 0941 0289  0.399
0.637 0372  0.524 0279  0.392  0.955
0.196  0.637 1.404 1.021  0.725 0.531
0.624  1.560  0.000 0.108 1318 0.252
0.909 0.207 1.061 0.738 0.612 1.179
0295 0.685  0.590 0.907 0.637 0.442
0.594  0.000 0.363 0.503 0.181 0.291
0442 1303 1.567 0.637 0941 0579
1.220  0.898  1.577 1.498 0.265 0.252
1303 1.157 0312 0.866 0979 0.373
0.187 0.970  0.758 0.588  0.909  0.000
1.560  0.624  0.505 0.606  0.283  0.463
0.849  1.592  0.909 0.490 0337 1.248
2411 1.019 0.362 0.163 0.813  2.010
1.705  0.829  0.329 0.277  0.000 1.213
1.019  0.884  0.909 0293  0.544  0.808

For 250 meters, the sample mean is 0.818 and the sample
SD is 0.514. For 800 meters, the sample mean is 0.628 and
the sample SD is 0.413. Do these data provide statistical-
ly significant evidence, at the 0.10 level, to support the
ecologist’s theory? Investigate with an appropriate graph
and test.

7.6 More on Interpretation of Statistical Significance

Ideally, statistical analysis should aid the researcher by helping to clarify whatever
message is contained in the data. For this purpose, it is not enough that the statistical
calculations be correct; the results must also be correctly interpreted. In this section
we explore some principles of interpretation that apply not only to the ¢ test, but
also to other statistical tests to be discussed later.

Significant Difference versus Important Difference

The term significant is often used in describing the results of a statistical analysis.
For example, if an experiment to compare a drug against a placebo gave data with a
very small P-value, then the conclusion might be stated as “The effect of the drug
was highly significant.” As another example, if two fertilizers for wheat gave a yield
comparison with a large P-value, then the conclusion might be stated as “The wheat
yields did not differ significantly between the two fertilizers” or “The difference
between the fertilizers was not significant.” As a third example, suppose a substance
is tested for toxic effects by comparing exposed animals and control animals, and
that the null hypothesis of no difference is not rejected. Then the conclusion might
be stated as “No significant toxicity was found.”
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Clearly such phraseology using the term significant can be seriously misleading.
After all, in ordinary English usage, the word significant connotes “substantial” or
“important.” In statistical jargon, however, the statement

“The difference was significant”
means nothing more or less than
“The null hypothesis of no difference was rejected.”

This is to say, “We found sufficient evidence that the difference in sample means was
not caused by chance error alone.”
By the same token, the statement

“The difference was not significant”
means

“There was not sufficient evidence that the observed difference in means
was due to anything other than chance variation.”

It would perhaps be preferable if a different word were used in place of “signifi-
cant,” such as “discernible” (meaning that the test discerned a difference). Alas, the
specialized usage of the word significant has become quite common in scientific
writing and understandably is the source of much confusion.

It is essential to recognize that a statistical test provides information about
only one question: Is the difference observed in the data large enough to infer that
a difference in the same direction exists in the population? The question of
whether a difference is important, as opposed to (statistically) significant, cannot
be decided on the basis of the P-values alone but must also include an examina-
tion of the magnitude of the estimated population difference as well as specific ex-
pertise in the research area or practical situation. The following two examples
illustrate this fact.

Serum LD Lactate dehydrogenase (LD) is an enzyme that may show elevated activi-
ty following damage to the heart muscle or other tissues. A large study of serum LD
levels in healthy young people yielded the results shown in Table 7.6.1.43

Table 7.6.1 Serum LD (U/1)
Males Females

n 270 264

y 60 57

s 11 10

The difference between males and females is quite significant; in fact, ¢, = 3.3,
which gives a P-value ~ 0.001. However, this does not imply that the difference
(60 — 57 = 3 U/) is large or important in any practical sense. [

Body Weight Imagine that we are studying the body weight of men and women, and
we obtain the fictitious but realistic data shown in Table 7.6.2.44
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Table 7.6.2 Body weight (Ib)
Males Females

n 2 2

y 175 143

s 35 34

For these data the ¢ test gives t;, = 0.93 and a P-value ~ 0.45. The observed differ-
ence between males and females is not small (it is 175 — 143 = 32 1b), yet it is not
statistically significant for any reasonable choice of «. The lack of statistical signifi-
cance does not imply that the sex difference in body weight is small or unimportant.
It means only that the data are inadequate to characterize the difference in the pop-
ulation means. A sample difference of 32 1b could easily happen by chance if the two
populations are identical, especially with such small sample sizes. [

Effect Size

The preceding examples show that the statistical significance or nonsignificance
of a difference does not indicate whether the difference is important. Neverthe-
less, the question of “importance” can and should be addressed in most data
analyses. To assess importance, one needs to consider the magnitude of the differ-
ence. In Example 7.6.1 the male versus female difference is “statistically signifi-
cant,” but this is largely due to the sample sizes being quite large. A ¢ test uses the
test statistic

_ 01 =)
SEw,-v,)

N

If ny and n, are large, then SE(y, -y, will be small and the test statistic will tend to
be large even when the difference in observed means (Y| — Y,) is very small.
Thus, one might find significant evidence for H, due to the sample size being
large, even if w; and u, are nearly equal. The sample size acts like a magnifying
glass: The larger the sample size, the smaller the difference that can be detected in a
hypothesis test.

The effect size in a study is the difference between w; and u,, expressed relative
to the standard deviation of one of the populations. If the two populations have the
same standard deviation, o, then the effect size is*

|y — ol
g

Effect size =

Of course, when working with sample data we can only calculate an estimated effect
size by using sample values in place of the unknown population values.

Serum LD For the data given in Example 7.6.1 the difference in sample means,
60 — 57 = 3,1is less than one-third of a standard deviation. Using the larger sample
SD we can calculate a sample effect size of

V1 — ¥ _ 60 — 57
K 11

Effect size = = 0.27

*If the standard deviations are not equal, we can use the larger SD in defining the effect size.
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Figure 7.6.2 Overlap
between two normally
distributed populations
when the effect size is 0.91
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This indicates that there is a lot of overlap between the two groups. Figure 7.6.1
shows the extent of the overlap that occurs if two normally distributed populations
differ on average by 0.27 SDs. [

Body Weight For the data given in Example 7.6.2 the difference in sample means,
175 — 143 = 32,is roughly one standard deviation. The sample effect size is

i — vl 175 - 143

=091
s 35

Effect size =

Figure 7.6.2 shows the extent of the overlap that occurs if two normally distributed
populations differ on average by 0.91 SD. [

The definition of effect size that we are using is probably unfamiliar to the bio-
logically oriented reader. It is more common in biology to “standardize” a differ-
ence of two quantities by expressing it as a percentage of one of them. For example,
the weight difference given in Table 7.6.2 between males and females, expressed as a
percentage of mean female weight, is

yi—y» 175 —143

- = 0.22 or 22%
7, 143 oresvo

Thus, the males are about 22% heavier than the females. However, from a statistical
viewpoint it is often more relevant that the average weights for males and females
are 0.91 SD apart.

Confidence Intervals to Assess Importance

Calculating the effect size is one way to quantify how far apart two sample means
are. Another reasonable approach is to use the observed difference (Y; — Y5) to
construct a confidence interval for the population difference (u; — u,). In inter-
preting the confidence interval, the judgment of what is “important” is made on the
basis of experience with the particular practical situation. The following three exam-
ples illustrate this use of confidence intervals.
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Serum LD For the LD data of Example 7.6.1,a 95% confidence interval for (u; — u,) is
3+£18
or

(1.2,4.8)

This interval implies (with 95% confidence) that the population difference in means
between the sexes does not exceed 4.8 U/L. As an expert, a physician evaluating this
information would know that typical day-to-day fluctuation in a person’s LD level is
around 6.5 U/1, which is higher than 4.8 U/L, the highest we estimate the mean sex
difference to be, and therefore this difference is negligible from the medical stand-
point. Consequently, the physician might conclude that it is unnecessary to differen-
tiate between the sexes in establishing clinical thresholds for diagnosis of illness. In
this case, the sex difference in LD may be said to be statistically significant but med-
ically unimportant. To put this another way, the data suggest that men do in fact tend
to have higher levels than women, but not higher in any clinically useful way. ]

Body Weight For the body-weight data of Example 7.6.2, a 95% confidence interval
for (uy — mo) is

32 + 149
or

(—117, 181)

From this confidence interval we cannot tell whether the true difference (between
the population means) is large favoring females, is small, or is large favoring males.
Because the confidence interval contains numbers of both small and large magni-
tude, it does not tell us whether the difference between the sexes is important or
unimportant. With such a wide confidence interval a researcher would likely wish to
conduct a larger study to better assess the importance of the difference. Suppose, for
example, that the means and standard deviations were as given in Table 7.6.2, but
that they were based on 2,000 rather than 2 people of each sex. Then the 95% confi-
dence interval would be

32 +2
or
(30, 34)

This interval would imply (with 95% confidence) that the difference is at least 30 1b,
an amount that might reasonably be regarded as important, at least for some
purposes. ]

Yield of Tomatoes Suppose a horticulturist is comparing the yields of two varieties of
tomatoes; yield is measured as pounds of tomatoes per plant. On the basis of practi-
cal considerations, the horticulturist has decided that a difference between the vari-
eties is “important” only if it exceeds 1 pound per plant, on the average. That is, the
difference is important if

lur — pol > 1.01b
Suppose the horticulturist’s data give the following 95% confidence interval:

(0.2,0.3)
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Because the largest estimate for the population difference is only 0.3 Ib (all values in
the interval are less than 1.0 1b), the data support (with 95% confidence) the asser-
tion that the difference is not important, using the horticulturist’s criterion. [

In many investigations, statistical significance and practical importance are both
of interest. The following example shows how the relationship between these two
concepts can be visualized using confidence intervals.

Yield of Tomatoes Let us return to the tomato experiment of Example 7.6.7. The con-
fidence interval was

(0.2,0.3)

Recall from Section 7.3 that the confidence interval can be interpreted in terms of a
t test. Because all values within the confidence interval are positive, a ¢ test (two-
tailed) at « = 0.05 finds significant evidence for H 4. Thus, the difference between
the two varieties is statistically significant, although it is not horticulturally impor-
tant: The data indicate that variety 1 is better than variety 2, but also that it is not
much better. The distinction between significance and importance for this example
can be seen in Figure 7.6.3, which shows the confidence interval plotted on the
(1 — mo)-axis. Note that the confidence interval lies entirely to one side of zero and
also entirely to one side of the “importance” threshold of 1.0.

K1 — 1 (Ib)

To further explore the relationship between significance and importance, let us
consider other possible outcomes of the tomato experiment. Table 7.6.3 shows how
the horticulturist would interpret various possible confidence intervals, still using
the criterion that a difference must exceed 1.0 1b in order to be considered
important.

Table 7.6.3 Interpretation of confidence intervals
95% confidence Is the difference
interval significant? important?
(0.2,0.3) Yes No
(12,1.3) Yes Yes
(0.2,1.3) Yes Cannot tell
(-0.2,0.3) No No
(-1.2,1.3) No Cannot tell

Table 7.6.3 shows that a significant difference may or may not be important, and
an important difference may or may not be significant. In practice, the assessment of
importance using confidence intervals is a simple and extremely useful supplement
to a test of hypothesis. [
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Exercises 7.6.1-7.6.8

7.6.1 A field trial was conducted to evaluate a new seed
treatment that was supposed to increase soybean yield.
When a statistician analyzed the data, the statistician
found that the mean yield from the treated seeds was
40 1b/acre greater than that from control plots planted
with untreated seeds. However, the statistician declared
the difference to be “not (statistically) significant.”
Proponents of the treatment objected strenuously to the
statistician’s statement, pointing out that, at current mar-
ket prices, 40 1b/acre would bring a tidy sum, which would
be highly significant to the farmer. How would you
answer this objection?*

7.6.2 In a clinical study of treatments for rheumatoid
arthritis, patients were randomly allocated to receive
either a standard medication or a newly designed med-
ication. After a suitable period of observation, statistical
analysis showed that there was no significant difference
in the therapeutic response of the two groups, but that
the incidence of undesirable side effects was significantly
lower in the group receiving the new medication. The
researchers concluded that the new medication should be
regarded as clearly preferable to the standard medica-
tion, because it had been shown to be equally effective
therapeutically and to produce fewer side effects. In what
respect is the researchers’ reasoning faulty? (Assume
that the term “significant” refers to rejection of H, at
a = 0.05.)

7.6.3 There is an old folk belief that the sex of a baby can
be guessed before birth on the basis of its heart rate. In an
investigation to test this theory, fetal heart rates were
observed for mothers admitted to a maternity ward.
The results (in beats per minute) are summarized in the
table.*0

HEART RATE (bpm)
n Mean SE

Males 250 13721 0.62
Females 250 137.18 0.53

Construct a 95% confidence interval for the difference in
population means. Does the confidence interval support
the claim that the population mean sex difference (if any)
in fetal heart rates is small and unimportant? (Use your
own “expert” knowledge of heart rate to make a judg-
ment of what is “unimportant.”)

7.6.4 Coumaric acid is a compound that may play a role
in disease resistance in corn. A botanist measured the
concentration of coumaric acid in corn seedlings grown

in the dark or in a light/dark photoperiod. The results
(nmol acid per gm tissue) are given in the accompanying
table.*’ [Note: Formula (6.7.1) yields 5.7 df.]

DARK PHOTOPERIOD
n 4 4
y 106 102
s 21 27

Suppose the botanist considers the effect of lighting con-
ditions to be “important” if the difference in means is
20%, that is, about 20 nmol/g. Based on a 95% confidence
interval, do the preceding data indicate whether the true
difference is “important”?

7.6.5 Repeat Exercise 7.6.4, assuming that the means and
standard deviations are as given in the table, but that the
sample sizes are 10 times as large (that is, n = 40 for
“dark” and n = 40 for “photoperiod”). [Note: Formula
(6.7.1) yields 73.5 df.]

7.6.6 Rescarchers measured the breadths, in mm, of the
ankles of 460 youth (ages 11-16); the results are shown in
the table.*®

MALES FEMALES
n 244 216
5 55.3 533
s 6.1 5.4

Calculate the sample effect size from these data.

7.6.7 As part of a large study of serum chemistry in
healthy people, the following data were obtained for the
serum concentration of uric acid in men and women aged
18-55 years.

SERUM URIC ACID (mmol/l)

MEN WOMEN
n 530 420
y 0.354 0.263
s 0.058 0.051

Construct a 95% confidence interval for the true differ-
ence in population means. Suppose the investigators
feel that the difference in population means is “clinically
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important” if it exceeds 0.08 mmol/l. Does the confi-  7.6.8 Repeat Exercise 7.6.7, assuming that the means and
dence interval indicate whether the difference is standard deviations are as given in the table, but that the
“clinically important”? [Note: Formula (6.7.1) yields  sample sizes are only one-tenth as large (that is, 53 men

934 df.]

and 42 women). [Note: Formula (6.7.1) yields 92 df.]

7.7 Planning for Adequate Power (Optional)

We have defined the power of a statistical test as
Power = Pr{significant evidence for H 4} if H 4is true

To put this another way, the power of a test is the probability of obtaining data that
provide statistically significant evidence for H, when H 4 is true.

Since the power is the probability of not making an error (of Type II), high
power is desirable: If H 4 is true, a researcher would like to find that out when con-
ducting a study. But power comes at a price. All other things being equal, more
observations (larger samples) bring more power, but observations cost time and
money. In this section we explain how a researcher can rationally plan an experi-
ment to have adequate power for the purposes of the research project and yet cost
as little as possible.

Specifically, we will consider the power of the two-sample ¢ test, conducted at
significance level «. We will assume that the populations are normal with equal SDs,
and we denote the common value of the SD by o (thatis, oy = o, = ). It can be
shown that in this case, for a given total sample size of 2n, the power is maximized if
the sample sizes are equal; thus we will assume that n; and n, are equal and denote
the common value by n (that is, n; = n, = n).

Under the above conditions, the power of the ¢ test depends on the following
factors: (a) a; (b) o; (¢) n; and (d) (w; — u,). After briefly discussing each of these
factors, we will address the all-important question of choosing the value of n.

Dependence of Power on «

In choosing «, one chooses a level of protection against Type I error. However, this
protection is traded for vulnerability to Type II error. If, for example, one chooses
a = 0.01 rather than « = 0.05, then one is requiring stronger evidence for H,
before choosing to claim there is significant evidence for H,, and so is (perhaps
unwittingly) also choosing to increase the risk of Type II error and reduce the
power. Thus, there is an unavoidable trade-off between the risk of Type I error and
the risk of Type II error.

Dependence on o

The larger o, the smaller the power (all other things being equal). Recall from
Chapter 5 that the reliability of a sample mean is determined by the quantity

0'?:

Ss

The larger o is, the more variability there is in the sample mean. Thus, having a
larger o implies having samples that produce less reliable information about each
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population mean, and so less power to discern a difference between them. In order
to increase power, then, a researcher usually tries to design the investigation so as to
have o as small as possible. For example, a botanist will try to hold light conditions
constant throughout a greenhouse area, a pharmacologist will use genetically iden-
tical experimental animals, and so on. Usually, however, ¢ cannot be reduced to
zero; there is still considerable variation in the observations.

Dependence on n

The larger n, the higher the power (all other things being equal). If we increase n, we
decrease a/\/ﬁ; this improves the precision of the sample means (Y, and Y5). In
addition, larger n gives more information about o; this is reflected in a reduced crit-
ical value for the test (reduced because of more df). Thus, increasing n increases the
power of the test in two ways.

Dependence on (w; — w,)

In addition to the factors we have discussed, the power of the ¢ test also depends on
the actual difference between the population means, that is, on (u; — w,). This
dependence is very natural, as illustrated by the following example.

Heights of People In order to clearly illustrate the concepts, we consider a familiar
variable, body height of people. Imagine what would happen if an investigator were
to measure the heights of two random samples of eleven people each (n = 11), and
then conduct a two-tailed 7 test at & = 0.05.

(a) First, suppose that sample 1 consisted of 17-year-old males and sample 2 con-
sisted of 17-year-old females. The two population means differ substantially; in
fact, (u; — wo) is about 5 inches (u; ~ 69.1 and u, ~ 64.1 inches).”” It can be
shown (as we will see) that in this case the investigator has about a 99%
chance of obtaining significant evidence for a difference (i.e., H,) and correct-
ly concluding that the males in the population of 17-year-olds are taller (on
average) than the females.

(b) By contrast, suppose that sample 1 consisted of 17-year-old females and sam-
ple 2 consisted of 14-year-old females. The two population means differ, but
by a modest amount; the difference is (u; — up) = 0.6 inches (u; = 64.1 and
Mo =~ 63.5 inches). It can be shown that in this case the investigator has less
than a 10% chance of obtaining significant evidence of a difference (i.e, H,);
in other words, there is more than a 90% chance that the investigator will fail
to detect the fact that 17-year-old girls are taller than 14-year-old girls. (In
fact, it can be shown that there is a 29% chance that Y, will be less than Y, —
that is, there is a 29% chance that eleven 17-year-old girls chosen at random
will be shorter on the average than eleven 14-year-old girls chosen at
random!)

The contrast between cases (a) and (b) is not due to any change in the SDs; in fact,
for each of the three populations the value of o is about 2.5 inches. Rather, the con-
trast is due to the simple fact that, with a fixed n and o, it is easier to detect a large
difference than a small difference. [
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Planning a Study

Suppose an investigator is planning a study for which the ¢ test will be appropriate.
How shall she take into account all the factors that influence the power of the
test? First consider the choice of significance level «. A simple approach is to
begin by determining the cost of an adequately powerful study using a somewhat
liberal choice (say, @ = 0.05 or 0.10). If that cost is not high, the investigator can
consider reducing « (say, to 0.01) and see if an adequately powerful study is still
affordable.

Suppose, then, that the investigator has chosen a working value of «. Suppose
also that the experiment has been designed to reduce o as far as practicable, and
that the investigator has available an estimate or guess of the value of o.

At this point, the investigator needs to ask herself about the magnitude of the
difference she wants to detect. As we saw in Example 7.7.1, a given sample size may
be adequate to detect a large difference in population means, but entirely inade-
quate to detect a small difference. As a more realistic example, an experiment using
S rats in a treatment group and 5 rats in a control group might be large enough to
detect a substantial treatment effect, while detection of a subtle treatment effect
would require more rats (perhaps 30) in each group.

The preceding discussion suggests that choosing a sample size for adequate
power is somewhat analogous to choosing a microscope: We need high resolving
power if we want to see a very tiny structure; for large structures a hand lens will do.
In order to proceed with planning the experiment, the investigator needs to decide
how large an effect she is looking for.

Recall that in Section 7.7, we defined the effect size in a study as the difference
between w; and u,, expressed relative to the standard deviation of one of the popu-
lations. If, as we are assuming here, the two populations have the same standard
deviation, o, then the effect size is

|M1 - M2|
g

Effect size =

That is, the effect size is the difference in population means expressed relative to the
common population SD. The effect size is a kind of “signal to noise ratio,” where
(m1 — mo) represents the signal we want to detect and o represents the background
noise that tends to obscure the signal. Figure 7.7.1(a) shows two normal curves for
which the effect size is 0.5; Figure 7.7.1(b) shows two normal curves for which the
effect size is 4. Clearly, at a fixed sample size it is easier to detect the difference
between the curves in graph (b) than it is in graph (a).

If « and the effect size have been specified, then the power of the ¢ test depends
only on the sample sizes (n). Table 5 at the end of the book shows the value of n

VAN
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Figure 7.7.1 Normal distributions with an effect size (a) of 0.5 and (b) of 4
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Example
1.7.2

Figure 7.7.2 Height

distributions for
Example 7.7.2

Example

.73

required in order to achieve a specified power against a specified effect size. Let us
see how Table 5 applies to our familiar example of body height.

Heights of People In Example 7.7.1, case (a), we considered samples of 17-year-old
males and 17-year-old females. The effect size is

w1 — ol _ 69.1 — 64.1 _ _
o 25 25 20

5

For a two-tailed ¢ test at @ = 0.05, Table 5 shows that the sample size required
for a power of 0.99 is n = 11; this is the basis for the claim in Example 7.7.1
that the investigator has a 99% chance of detecting the difference between males
and females. Figure 7.7.2 shows the two distributions being considered in
Example 7.7.2. Suppose 100 researchers each conduct the following study. Take
a random sample of eleven 17-year-old males and a random sample of eleven
17-year-old females, find the sample average heights of the two groups, and then
conduct a two-tailed ¢ test of Hy: u; = u, using a = 0.05. We would expect 99 of
the 100 researchers to find statistically significant evidence that the average
heights of 17-year-old males and females differ (i.e., significant evidence for H ).
We would expect one of the 100 researchers to not find sufficient evidence for
a difference, at the 0.05 level of significance. (So one researcher would make a
Type 11 error.) ]

64.1 69.1

As we have seen, in order to choose a sample size the researcher needs to specify
not only the size of the effect she wishes to detect, but also how certain she wants to
be of detecting it; that is, it is necessary to specify how much power is wanted. Since
the power measures the protection against Type II error, the choice of a desired
power level depends on the consequences that would result from a Type II error. If
the consequences of a Type II error would be very unfortunate (for example, if a
promising but risky cancer treatment is being tested on humans and a negative
result would discredit the treatment so that it would never be tested again), then the
researcher might specify a high power, say 0.95 or 0.99. But of course high power is
expensive in terms of n. For much research, a Type 1I error is not a disaster, and a
lower power such as 0.80 is considered adequate.

The following example illustrates a typical use of Table 5 in planning an
experiment.

Postpartum Weight Loss A group of scientists wished to investigate whether or not an
Internet-based intervention program would help women lose weight after giving
birth. One group of postpartum women was to be enrolled in an Internet-based
program that provides weekly exercise and dietary guidance appropriate to their
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time since giving birth, track their weight-loss progress, and establish an online
forum for nutrition and exercise discussion with other recent mothers. Another
group of postpartum women (the “control group”) was to be given traditional writ-
ten dietary and exercise guidelines by their doctors. The response variable for the
study was to be the amount of weight lost at 12 months postpartum in kg. Previous
studies have shown that at 12 months postpartum, the mean weight loss is about 3.6
kg with a standard deviation of 4.0 kg. (Note: A negative weight loss is a weight
gain). The research team wanted to show at least a 50% improvement in weight loss
for the Internet-intervention group; that is, they would like to show that the Inter-
net-based program women lose at least 1.8 kg (50% of 3.6kg) more weight than the
controls. They planned to conduct a one-tailed ¢-test at the 5% significance level.
The team had to decide how many women (») to put in each group.
The effect size that the team wanted to consider is

i — wof 1.8
p 10 0.45
For this effect size, and for a power of 0.80 with a one-tailed test at the 5% signifi-
cance level, Table 5 yields n = 62, which means 62 women were needed in each
group.

At this point, the research team had to consider questions, such as (1) Is it feasi-
ble to enroll 124 postpartum women (62 in each group) in the study? If not, then
(2) Would they perhaps be willing to redefine the size of the difference between the
groups that they considered to be important, in order to reduce the required n?
With questions such as these, and repeated use of Table 5, they could finally decide
on a firm value for n, or possibly decide to abandon the project because an adequate
study would be too costly.

Normally the story ends here, but there was an extra wrinkle in the planning of
this study: The research team knew from experience that about 20% of the women
enrolled in these types of studies would drop out, for one reason or another, before
the study ended. (There is no formula or table that tells one how many subjects will
drop out of a study such as this. Here the only guide is experience.) In this case, the
research team planned to enroll 150 women (a little more than 20% extra, 13
women in each group), in order to allow for some attrition and still end up with
enough data so that they would have the power they wanted. >! [

Exercises 7.7.1-7.7.1 |

7.7.1 One measure of the meat quality of pigs is backfat
thickness. Suppose two researchers, Jones and Smith, are
planning to measure backfat thickness in two groups of
pigs raised on different diets. They have decided to use
the same number (n) of pigs in each group, and to com-
pare the mean backfat thickness using a two-tailed ¢ test
at the 5% significance level. Preliminary data indicate
that the SD of backfat thickness is about 0.3 cm.

When the researchers approach a statistician for
help in choosing #, she naturally asks how much differ-
ence they want to detect. Jones replies, “If the true differ-
ence is 1/4 cm or more, I want to be reasonably sure of
rejecting H,.” Smith replies, “If the true difference is
1/2 cm or more, I want to be very sure of rejecting H,.”

If the statistician interprets “reasonably sure” as 80%
power, and “very sure” as 95% power, what value of n
will she recommend

(a) to satisfy Jones’s requirement?
(b) to satisfy Smith’s requirement?

7.7.2 Refer to the brain NE data of Example 7.2.1. Sup-
pose you are planning a similar experiment; you will
study the effect of LSD (rather than toluene) on brain
NE. You anticipate using a two-tailed ¢ test at a = 0.05.
Suppose you have decided that a 10% effect (increase or
decrease in mean NE) of LSD would be important, and
so you want to have good power (80%) to detect a differ-
ence of this magnitude.
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(a) Using the data of Example 7.2.1 as a “pilot study,”
determine how many rats you should have in each
group. (The mean NE in the control group in
Example 7.2.1 is 444.2 ng/g and the SD is = 69.6 ng/g.)

(b) If you were planning to use a one-tailed ¢ test, what
would be the required number of rats?

7.7.3 Suppose you are planning a greenhouse experiment
on growth of pepper plants. You will grow # individually
potted seedlings in standard soil and another n seedlings
in specially treated soil. After 21 days, you will measure
Y = total stem length (cm) for each plant. If the effect of
the soil treatment is to increase the population mean stem
length by 2 cm, you would like to have a 90% chance of
rejecting H, with a one-tailed ¢ test. Data from a pilot
study (such as the data in Exercise 2.62) on 15 plants
grown in standard soil give y = 12.5cm and s = 0.8 cm.

(a) Suppose you plan to test at « = 0.05. Use the pilot in-
formation to determine what value of n you should use.

(b) What conditions are necessary for the validity of the
calculation in part (a)? Which of these can be
checked (roughly) from the data of the pilot study?

(c) Suppose you decide to adopt a more conservative
posture and test at @ = 0.01. What value of n should
you use?

7.7.4 Diastolic blood pressure measurements on Ameri-
can men aged 18-44 years follow approximately a normal
curve with p = 81 mm Hg and ¢ = 11 mm Hg. The dis-
tribution for women aged 18-44 is also approximately
normal with the same SD but with a lower mean:
w = 75 mm Hg.>? Suppose we are going to measure the
diastolic blood pressure of n randomly selected men and
n randomly selected women in the age group 18—44 years.
Let E be the event that the difference between men and
women will be found statistically significant by a ¢ test.
How large must n be in order to have Pr{E} = 0.9

(a) if we use a two-tailed test at « = 0.05?
(b) if we use a two-tailed test at « = 0.01?

(c) if we use a one-tailed test (in the correct direction) at
a = 0.05?

7.7.5 Suppose you are planning an experiment to test the
effect of a certain drug treatment on drinking behavior in
the rat. You will use a two-tailed ¢ test to compare a
treated group of rats against a control group; the
observed variable will be Y = one-hour water consump-
tion after 23-hour deprivation. You have decided that, if
the effect of the drug is to shift the population mean
consumption by 2 ml or more, then you want to have at
least an 80% chance of finding significant evidence for
H , at the 5% significance level.

(a) Preliminary data indicate that the SD of Y under
control conditions is approximately 2.5 ml. Using this
as a guess of o, determine how many rats you should
have in each group.

(b) Suppose that, because the calculation of part (a)
indicates a rather large number of rats, you consider
modifying the experiment so as to reduce o. You find
that, by switching to a better supplier of rats and by
improving lab procedures, you could cut the SD in
half; however, the cost of each observation would
be doubled. Would these measures be cost-effective;
that is, would the modified experiment be less costly?

7.7.6 Data from a large study indicate that the serum
concentration of lactate dehydrogenase (LD) is higher in
men than in women. (The data are summarized in
Example 7.6.1.) Suppose Dr. Sanchez proposes to con-
duct his own study to replicate this finding; however, be-
cause of limited resources Sanchez can enlist only 35 men
and 35 women for his study. Supposing that the true dif-
ference in population means is 4 U/l and each population
SD is 10 U/l, what is the probability that Sanchez will be
successful? Specifically, find the probability that Sanchez
will reject H, with a one-tailed ¢ test at the 5% signifi-
cance level.

7.1.7 Refer to the painkiller study of Exercise 7.5.10.
That study included 25 observations in each treatment
group and showed an effect size of about 0.5. If this is the
true population effect size, what is the (approximate)
chance of finding a significant difference between the
mean effectiveness of the two drugs in an experiment of
this size (i.e., with samples of 25 each)?

7.7.8 Refer to the painkiller study of Exercise 7.5.10. In
that study, the evidence favoring the drug was marginally
significant (0.025 < P < 0.05). Suppose Dr. Williams is
planning a new study on the same drug in order to try to
replicate the original findings, that is, to show the drug to
be effective. She will consider this study successful if she
rejects H, with a one-tailed test at « = 0.05. In the origi-
nal study, the difference between the treatment means
was about half a standard deviation [(32 — 25)/13 = 0.5].
Taking this as a provisional value for the effect size,
determine how many patients Williams should have in
each group in order for her chance of success to be

(a) 80% (b) 90%

(Note: This problem illustrates that surprisingly large sam-
ple sizes may be required to make a replication study
worthwhile, especially if the original findings were only
marginally significant.)

7.7.9 Consider comparing two normally distributed dis-
tributions for which the effect size of the difference is

(a) 3 (b) 1

In each case, draw a sketch that shows how the distribu-
tions overlap. (See Figure 7.2.1.)

7.7.10 An animal scientist is planning an experiment to
evaluate a new dietary supplement for beef cattle. One
group of cattle will receive a standard diet and a second
group will receive the standard diet plus the supplement.



The researcher wants to have 90% power to detect an
increase in mean weight gain of 20 kg, using a one-tailed ¢
test at « = 0.05. Based on previous experience, he
expects the SD to be 17 kg. How many cattle does he
need for each group?
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7.7.11 A researcher is planning to conduct a study that
will be analyzed with a two-tailed ¢ test at the 5% signifi-
cance level. She can afford to collect 20 observations in
each of the two groups in her study. What is the smallest
effect size for which she has at least 95% power?

7.8 Student’s t: Conditions and Summary

In the preceding sections we have discussed the comparison of two means using
classical methods based on Student’s ¢ distribution. In this section we describe the
conditions on which these methods are based. In addition, we summarize the meth-
ods for convenient reference.

Conditions

The ¢ test and confidence interval procedures we have described are appropriate if
the following conditions* hold:

1. Conditions on the design of the study

(a) It must be reasonable to regard the data as random samples from their
respective populations. The populations must be large relative to their
sample sizes. The observations within each sample must be independent.

(b) The two samples must be independent of each other.

2. Condition on the form of the population distributions

The sampling distributions of Y, and Y, must be (approximately) nor-
mal. This can be achieved via normality of the populations or by appealing to
the Central Limit Theorem (recall Section 6.5) if the populations are nonnor-
mal but the sample sizes are large, where “largeness” depends on the degree of
nonnormality of the populations. In many practical situations, moderate sam-
ple sizes (say, n; = 20, n, = 20) are quite “large” enough. However, we always
need to be aware that one or two extreme outliers can have a great effect on
the results of any statistical procedure, including the ¢ test.

Verification of Conditions

A check of the preceding conditions should be a part of every data analysis.

A check of condition 1(a) would proceed as for a confidence interval (Section
6.5), with the researcher looking for biases in the experimental design and verifying
that there is no hierarchical structure within each sample.

Condition 1(b) means that there must be no pairing or dependency between the
two samples. The full meaning of this condition will become clear in Chapters 8
and 9.

Sometimes it is known from previous studies whether the populations can be
considered to be approximately normal. In the absence of such information, the nor-
mality requirement can be checked by making histograms, normal probability plots,

*Many authors use the word “assumptions” where we are using the word “conditions.”
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Example
7.8.1

or Shaprio—Wilk normality tests for each sample separately. Fortunately, the ¢ test
is fairly robust against departures from normality.>® Usually, only a rather conspic-
uous departure from normality (outliers, or long straggly tails) should be cause for
concern. Moderate skewness has very little effect on the ¢ test, even for small
samples.

Consequences of Inappropriate Use of Student’s ¢

Our discussion of the ¢ test and confidence interval (in Sections 7.3-7.8) was based
on the conditions (1) and (2). Violation of the conditions may render the methods
inappropriate.

If the conditions are not satisfied, then the ¢ test may be inappropriate in two
possible ways:

1. It may be invalid in the sense that the actual risk of Type I error is larger than
the nominal significance level a. (To put this another way, the P-value yielded
by the ¢ test procedure may be inappropriately small.)

2. The t test may be valid, but less powerful than a more appropriate test.

If the design includes hierarchical structures that are ignored in the analysis, the ¢
test may be seriously invalid. If the samples are not independent of each other, the
usual consequence is a loss of power.

One fairly common type of departure from the condition of normality is for one
or both populations to have long straggly tails. The effect of this form of nonnormal-
ity is to inflate the SE, and thus to rob the ¢ test of power.

Inappropriate use of confidence intervals is analogous to that for ¢ tests. If the
conditions are violated, then the confidence interval may not be valid (i.e., too
narrow for the prescribed level of confidence), or it may be valid but wider than
necessary.

Other Approaches

Because methods based on Student’s ¢ distribution are not always the most appro-
priate, statisticians have devised other methods that serve similar purposes. One of
these is the Wilcoxon—-Mann—Whitney test, which we will describe in Section 7.10.
Another approach to the difficulty is to transform the data, for instance, to analyze
log (Y) or In (Y) instead of Y itself.

Tissue Inflammation Researchers took skin samples from 10 patients who had breast
implants and from a control group of 6 patients. They recorded the level of inter-
leukin-6 (in pg/ml/10 g of tissue), a measure of tissue inflammation, after each tissue
sample was cultured for 24 hours. Table 7.8.1 shows the data.* Parallel dotplots of
these data shown in Figure 7.8.1(a) and normal probability plots shown in
Figure 7.8.2(a) indicate that the distributions are severely skewed, so a transforma-
tion is needed before Student’s ¢ procedure can be used. Taking the base 10 loga-
rithm of each observation produces the values shown in the right-hand columns of
Table 7.8.1 and in Figure 7.8.1(b). The normal probability plots in Figure 7.8.2(b)
show that the condition of normality is met after the data have been transformed to
log scale. Thus, we will conduct an analysis of the data in log scale. That is, we will test

Hy:py = po



Figure 7.8.1 Dotplots of
tissue inflammation data
from Example 7.8.1 (a) in
the original scale; (b) in
log scale
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Table 7.8.1 Interleukin-6 levels of breast implant patients and control patients
Original data Log scale
Breast implant Control Breast implant Control
patients patients patients patients
231 35,324 2.364 4.548
308,287 12,457 5.489 4.095
33,291 8,276 4.522 3918
124,550 44 5.095 1.643
17,075 278 4232 2.444
22,955 840 4.361 2.924
95,102 4978
5,649 3.752
840,585 5.925
58,924 4.770
y 150,665 9,537 4.549 3.262
s 259,189 13,613 0.992 1.111
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where u, is the population mean of the log of interleukin-6 level for breast implant
patients and w, is the population mean of the log of interleukin-6 level for control
patients. Suppose we choose o = 0.10. The test statistic is

(4549 — 3262)

bs 0553 2P

Formula (6.7.1) yields df = 9.7. The P-value for the test is 0.045. Thus, we have evi-
dence, at the 0.10 level of significance (and at the 0.05 level, as well), that the mean
log interleukin-6 level is higher in the breast implant population than in the control
population. [
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Summary of t Test Mechanics

For convenient reference, we summarize the mechanics for Student’s ¢ test of equality
of the means of independent samples.

— t Test
Hy: py = mp
H ,: puy # p, (nondirectional)
H ,: py < p, (directional)
H ,: pq > p, (directional)
Test statistic: ¢, = M
SEw,-v,)
P-value = tail area under Student’s ¢ curve with
3 (SE? + SE3)?
~ SE¥(n; — 1) + SE¥(n, — 1)
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Nondirectional H 4: P-value = two-tailed area beyond ¢, and —t

Directional H 4: Step 1. Check directionality.

Step 2. P-value = single-tail area beyond ¢

Decision: Significant evidence for H 4if P-value = «

Exercises 7.8.1-7.8.2

7.8.1 To determine if the environment can affect sperm
quality and production in cattle, a researcher randomly
assigned 13 bulls to one of two environments. Six were
raised in an open range environment while 7 were reared
in a smaller penned environment. The following plot dis-
plays the sperm concentrations (millions of sperm/ml) of
semen samples from the 13 bulls.>

(a) Using the preceding graph to justify your answer,
would the use of Student’s + method be appropriate
to compare the mean sperm concentrations under
these two experimental conditions?

(b) How would your answer to (a) change if the data
consisted of 60 and 70 specimens rather than 6

and 7?

(c) The Shapiro-Wilk test of normality yields P-values
Z 600 * of 0.0012 and 0.0139 for the Open and Pen data,
= respectively. How do these results support or refute
g 500 — your response to part (a)?
S 4004 o (d) How might a transformation help you analyze these
< data?
=}
S 300 7.8.2 Refer to the serotonin data of Exercise 7.2.7. On
g ° what grounds might an objection be raised to the use of
g 200 — s the ¢ test on these data? (Hint: For each sample, calculate
g the SD and compare it to the sample mean.)
& H

I I
Open Pen

7.9 More on Principles of Testing Hypotheses

Our study of the ¢ test has illustrated some of the general principles of statistical
tests of hypotheses. In the remainder of this book we will introduce several other
types of tests besides the ¢ test.

A General View of Hypothesis Tests

A typical statistical test involves a null hypothesis H,, an alternative hypothesis, or
research hypothesis, H 4, and a test statistic that measures deviation or discrepancy
of the data from H,. The sampling distribution of the test statistic, under the
assumption that Hj is true, is called the null distribution of the test statistic. (If we
are conducting a randomization test as in Section 7.1, then the null distribution is the
distribution of all possible differences in sample means due to random assignment
of observations to groups, such as that shown in Table 7.1.2; as another example, if
we are conducting a ¢ test, then the null distribution of the  statistic ¢, is—under cer-
tain conditions—a Student’s ¢ distribution.) The null distribution indicates how
much the test statistic can be expected to deviate from H,, because of chance alone.

In testing a hypothesis, we assess the evidence against H, (and in favor of H ,)
by locating the test statistic within the null distribution; the P-value is a measure of
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this location, which indicates the degree of compatibility between the data and H,,.
The dividing line between compatibility and incompatibility is specified by an arbi-
trarily chosen significance level a. The decision whether to claim there is significant
evidence for H , is made according to the following rule:

Reject H if P-value = a.

When a computer is not available, we will not be able to calculate the P-value exact-
ly but will bracket it using a table of critical values. If H 4 is directional, the bracket-
ing of P-value is a two-step procedure.

Every test of a null hypothesis H has its associated risks of Type I error (finding
significant evidence for H, when H is true) and Type II error (not finding signifi-
cant evidence for H, when H 4 is true). The risk of Type I error is always limited by
the chosen significance level, a:

Pr{reject Hy} = «aif His true

Thus, the hypothesis testing procedure treats the Type I error as the one to be most
stringently guarded against. By contrast, the power of a test can be quite low, and
equivalently the risk of Type II error can be quite large, if the samples are small.

How Are H, and Hz Chosen?

A common difficulty when first studying hypothesis testing is figuring out what the
null and alternative hypotheses should be. In general, the null hypothesis represents
the status quo—what one would believe, by default, unless the data showed other-
wise.* Typically the alternative hypothesis is a statement that the researcher is trying
to establish; thus H 4 is also referred to as the research hypothesis. For example, if we
are testing a new drug against a standard drug, the research hypothesis is that the
new drug is better than the standard drug, while the null hypothesis is that the new
drug is no different than the standard —in the absence of evidence, we would expect
the two drugs to be equally effective. The typical null hypothesis, Hy: n; = u,, states
that the two population means are equal and that any difference between the sam-
ple means is simply due to chance error in the sampling process. The alternative
hypothesis is that there is a difference between the drugs, so that any observed dif-
ference in sample means is due to a real effect, rather than being due to chance error
alone. We conclude that we have statistically significant evidence for the research
hypothesis if the data show a difference in sample means beyond what can reason-
ably be attributed to chance.

Here are other examples: If we are comparing men and women on some attrib-
ute, the usual null hypothesis is that there is no difference, on average, between men
and women; if we are studying a measure of biodiversity in two environments, the
usual null hypothesis is that the biodiversities of the two environments are equal, on
average; if we are studying two diets, the usual null hypothesis is that the diets pro-
duce the same average response.

Another Look at P-Value

In order to place P-value in a general setting, let us consider some verbal interpre-
tations of P-value.

*This general rule is not always true; it is provided only as a guideline.
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First we revisit the randomization test. For a nondirectional H 4 the P-value is
the proportion of all randomizations that results in a difference of sample means
that is as large, or larger than, the difference that was observed in the actual study.
Thus we can define the P-value as follows:

The P-value of the data is the probability (assuming H, is true) of getting a
result as extreme as, or more extreme than, the result that was actually
observed.

To put this another way,

The P-value is the probability that, if H, were true, a result would be
obtained that would deviate from H, as much as (or more than) the actual
data do.

Now consider the ¢ test. For a nondirectional H 4, we have defined the P-value to be
the two-tailed area under the Student’s ¢ curve beyond the observed value of .

Actually, these descriptions of P-value are a bit too limited. The P-value actual-
ly depends on the nature of the alternative hypothesis. When we are performing a ¢
test against a directional alternative, the P-value of the data is (if the observed devi-
ation is in the direction of H,) only a single-tailed area beyond the observed value
of t,. The more general definition of P-value is the following:

The P-value of the data is the probability (assuming H, is true) of getting
a result as deviant as, or more deviant than, the result actually observed—
where deviance is measured as discrepancy from H, in the direction of
Hy,.

The P-value measures how easily the observed deviation could be explained as
chance variation rather than by the alternative explanation provided by H 4. For
example, if the ¢ test yields a P-value of P = 0.036 for our data, then we may say
that if Hy were true we would expect data to deviate from H,, as much as our data did
only 3.6% of the time (in the meta-study).

Another definition of P-value that is worth thinking about is the following:

The P-value of the data is the value of « for which H,, would just barely be
rejected, using those data.

To interpret this definition, imagine that a research report that includes a P-value is
read by a number of interested scientists. The scientists who are quite skeptical of
H 4, might require very strong evidence before being convinced and thus would use
a very conservative decision threshold, such as o = 0.001; the scientists who are
more favorably disposed toward H, might require only weak evidence and thus
use a liberal value such as « = 0.10. The P-value of the data determines the point,
within this spectrum of opinion, that separates those who find the data to be con-
vincing in favor of H4 and those who do not. Of course, if the P-value is large, for
instance P = (.40, then presumably no reasonable person would reject Hy and be
convinced of H 4.

As the preceding discussion shows, the P-value does not describe all facets of
the data, but relates only to a test of a particular null hypothesis against a particular
alternative. In fact, we will see that the P-value of the data also depends on which
statistical test is used to test a given null hypothesis. For this reason, when describing
in a scientific report the results of a statistical test, it is best to report the P-value
(exactly, if possible), the name of the statistical test, and whether the alternative
hypothesis was directional or nondirectional.

We repeat here, because it applies to any statistical test, the principle expound-
ed in Section 7.6: The P-value is a measure of the strength of the evidence against
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H,, but the P-value does not reflect the magnitude of the discrepancy between the
data and H,. The data may deviate from H, only slightly, yet if the samples are large,
the P-value may be quite small. By the same token, data that deviate substantially
from H, can nevertheless yield a large P-value. The P-value alone does not indicate
whether a scientific finding is important.

Interpretation of Error Probabilities

A common mistake is to interpret the P-value as the probability that the null
hypothesis is true. A related misconception is the belief that, if we find significant
evidence for H 4 (for example) at the 5% significance level, then the probability that
H, is true is 5%. These interpretations are not correct.* This point can be illustrated
by an analogy with medical diagnosis.

In applying a diagnostic test for an illness, the null hypothesis is that the person
is healthy —this is what we will believe unless the medical test indicates otherwise.
Two types of error are possible: A healthy individual may be diagnosed as ill (false
positive) or an ill individual may be diagnosed as healthy (false negative). Trying out
a diagnostic test on individuals known to be healthy or ill will enable us to estimate
the proportions of these groups who will be misdiagnosed; yet this information
alone will not tell us what proportion of all positive diagnoses are false diagnoses.
These ideas are illustrated numerically in the next example.

Medical Testing Suppose a medical test is conducted to detect an illness. Further,
suppose that 1% of the population has the illness in question. If the test indi-
cates that the disease is present, we reject the null hypothesis that the person is
healthy. If H, is true, then this is a Type I error—a false positive. If the test indi-
cates that the disease is not present, we have a lack of significant evidence for H 4
(illness). Suppose that the test has an 80% chance of detecting the disease if
the person has it (this is analogous to the power of a hypothesis test being 80%)
and a 95% chance of correctly indicating that the disease is absent if the person
really does not have the disease (this is analogous to a 5% Type I error rate).
Figure 7.9.1 shows a probability tree for this situation, with bold lines indicating
the two ways in which the test result can be positive (i.e., the two ways that H, can
be rejected).

Now suppose that 100,000 persons are tested and that 1,000 of them (1%) ac-
tually have the illness. Then we would expect results like those given in Table 7.9.1,
with 5,750 persons testing positive (which is like finding significant evidence for
H 4 5,750 times). Of these, 4,950 are false positives. Put another way, the propor-
tion of the time that H, is true, given that we found significant evidence for H, is
4,950
5,750
false positives is due to the rarity of the disease. (The proportion of times that there
4,950
99,000
but that is a different conditional probability. Pr{A given B} # Pr{B given A}: The
probability of rainfall, given that there are thunder and lightning, is not the same as
the probability of thunder and lightning, given that it is raining.) ]

~ (.86, which is quite different from 0.05; this startlingly high proportion of

is significant evidence for H , given that H, is true, is = (.05, as expected,

*In fact, the probability that H is true cannot be calculated at all within the standard, “frequentist” approach to
hypothesis testing. Pr {His true} can be calculated if one uses what are known as Bayesian methods, which are
beyond the scope of this book.
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Event Probability
Test. True positive 0.008
positive
0.80
Have
disease (.20
0.01 Test
negative  False negative 0.002
Test ..
0.99 positive False positive 0.0495
Don't 0.05
have
diesase
0.95
Test
negative  True negative 0.9405

Table 7.9.1 Hypothetical results of medical test of 100,000 persons

True situation

Healthy (H, true) Il (H 4 true) Total

TEST Negative (lack of

RESULT  significant evidence
for H,) 94,050 200 94,250
Positive (significant
evidence for H ) 4,950 800 5,750
Total 99,000 1,000 100,000

The risk of Type I error is a probability computed under the assumption that H,
is true; similarly, the risk of a Type II error is computed assuming that H 4 is true. If
we have a well-designed study with adequate sample sizes, both of these probabili-
ties will be small. We then have a good test procedure in the same sense that the
medical test is a good diagnostic procedure. But this does not in itself guarantee that
most of the null hypotheses we reject are in fact false, or that most of those we do
not reject are in fact true. The validity or nonvalidity of such guarantees would
depend on an unknown and unknowable quantity —namely, the proportion of true
null hypotheses among all null hypotheses that are tested (which is analogous to the
incidence of the illness in the medical test scenario).

Perspective

We should mention that the philosophy of statistical hypothesis testing that we have
explained in this chapter is not shared by all statisticians. The view presented here,
which is called the frequentist view, is widely used in scientific research. An alterna-
tive view, the Bayesian view, incorporates not only the data observed in the study at
hand, but also the information that the researcher has from previous, related studies.
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In the past, many Bayesian techniques were not practical due to the complexity of
the mathematics that they require. However, greater computing power and
improved software have made Bayesian methods more popular in recent years.

Exercise 7.9.1

7.9.1 Suppose we have conducted a ¢ test, with @ = 0.05,  (c) We should reject Hy, and if we repeated the experi-

and the P-value is 0.04. For each of the following state- ment, there is a 4% chance that we would reject H,,
ments, say whether the statement is true or false and again.

explain why. (d) If H, is true, the probability of getting a test statistic
(a) There is a 4% chance that Hj is true. at least as extreme as the value of the #; that was
(b) We reject Hy with a = 0.05. actually obtained is 4%.

7.10 The Wilcoxon-Mann-Whitney Test

The Wilcoxon-Mann-Whitney test is used to compare two independent samples.* It
is a competitor to the ¢ test, but unlike the # test, the Wilcoxon-Mann-Whitney test is
valid even if the population distributions are not normal. The Wilcoxon-Mann-
Whitney test is therefore called a distribution-free type of test. In addition, the
Wilcoxon-Mann-Whitney test does not focus on any particular parameter such as a
mean or a median; for this reason it is called a nonparametric type of test.

Statement of Hy and Hy

Let us denote the observations in the two samples by Y; and Y;. A general statement
of the null and alternative hypotheses of a Wilcoxon-Mann-Whitney test are

H,: The population distributions of Y; and Y, are the same.

H ,: The population distribution of Y is shifted from the population distribu-
tion of Y, (i.e., Y; tends to be either greater or less than Y).

In practice, it is more natural to state Hy and H 4 in words suitable to the particular
application, as illustrated in Example 7.10.1.

Example Soil Respiration Soil respiration is a measure of microbial activity in soil, which
7.10.1 affects plant growth. In one study, soil cores were taken from two locations in a
forest: (1) under an opening in the forest canopy (the “gap” location) and (2) at a
nearby area under heavy tree growth (the “growth” location). The amount of carbon
dioxide given off by each soil core was measured (in mol CO,/g soil/hr). Table 7.10.1
contains the data.>®
An appropriate null hypothesis could be stated as

H\: The populations from which the two samples were drawn have the same
distribution of soil respiration.

*The test presented here is was developed by Wilcoxon in a 1945 article. Mann and Whitney, in a 1947 article,
elaborated on the test, which can be conducted in two mathematically equivalent ways. Thus, some books and
some computer programs implement the test in a different fashion than the way it is presented here. Also note
that some books refer to this as the Wilcoxon test, some as the Mann-Whitney test, and some (including this
text) as the Wilcoxon-Mann-Whitney test.
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Table 7.10.1 Soil respiration data
(mol CO,/g soil/hr) from
Example 7.10.1

Growth Gap
17 20 170 315 22 29 13 16
22 190 64 1518 14 6

or, more informally, as
H: The gap and growth areas do not differ with respect to soil respiration.
A nondirectional alternative could be stated as

H 4: The distribution of soil respiration rates tends to be higher in one of the
two populations.

or the alternative hypothesis might be directional, for example,

H ,: Soil respiration rates tend to be greater in the growth area than there
are in the gap area. [

Applicability of the Wilcoxon-Mann-Whitney Test

Figure 7.10.1 shows dotplots of the soil respiration data from Example 7.10.1;
Figure 7.10.2 shows normal probability plots of these data. The growth distribution

Figure 7.10.1 Dotplots of *
the soil respiration data
from Example 7.10.1

Now
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is skewed to the right, whereas the gap distribution is slightly skewed to the left. If
both distributions were skewed to the right, we could apply a transformation to the
data. However, any attempt to transform the growth distribution, such as taking
logarithms of the data, will make the skewness of the gap distribution worse. Hence,
the # test is not applicable here. The Wilcoxon-Mann-Whitney test does not require
normality of the distributions.

Method

The Wilcoxon-Mann-Whitney test statistic, which is denoted U, measures the
degree of separation or shift between two samples. A large value of U; indicates
that the two samples are well separated, with relatively little overlap between
them. Critical values for the Wilcoxon-Mann-Whitney test are given in Table 6 at
the end of this book. The following example illustrates the Wilcoxon-Mann-Whitney
test.

Soil Respiration Let us carry out a Wilcoxon-Mann-Whitney test on the biodiversity
data of Example 7.10.1.

1. The value of U, depends on the relative positions of the Y;’s and the Y;’s. The
first step in determining U; is to arrange the observations in increasing order,
as is shown in Table 7.10.2.

2. We next determine two counts, K; and K,, as follows:

(a) The K| count For each observation in sample 1, we count the number of
observations in sample 2 that are smaller in value (that is, to the left). We
count 1/2 for each tied observation. In the above data, there are five Y;’s
less than the first Y}, there are six Y5’s less than the second Y, there are six
Y,’s less than the third Y; and one equal to it, so we count 6 1/2. So far we
have counts of 5, 6, and 6.5. Continuing in a similar way, we get further
counts of 8,8, 8, and 8. All together there are seven counts, one for each Y.
The sum of all seven counts is K; = 49.5.

(b) The K, count For each observation in sample 2, we count the number of
observations in sample 1 that are smaller in value, counting 1/2 for ties.

Table 7.10.2 Wilcoxon-Mann-Whitney calculations for Example 7.10.2
Number of gap R % Number of growth

observations that are smaller Growth data Gap data observations that are smaller

5 17 6 0

6 20 13 0

6.5 22 14 0

8 64 15 0

8 170 16 0

8 190 18 1

8 315 22 2.5

29 3
Ky =495 K, =65
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This gives counts of 0, 0, 0, 0, 0, 1, 2.5, and 3. The sum of these counts is
K2 = 65

(c) Check If the work is correct, the sum of K; and K, should be equal to the
product of the sample sizes:

Kl + K2: nny
495 +65=7X8

3. The test statistic U, is the larger of K; and K. In this example, U, = 49.5.

4. To determine the P-value, we consult Table 6 with n = the larger sample size,
and n' = the smaller sample size. In the present case, n = 8 and n' = 7.
Values from Table 6 are reproduced in Table 7.10.3.

Table 7.10.3 Values from Table 6 forn = 8, n' =7

40 0.189 44 0.093 46 0.054 47 0.040 48 0.021 49 0.014 50 0.009

Let us test Hj against a nondirectional alternative at significance level @ = 0.05.
From Table 7.10.3, we note that when U, = 49, the P-value is 0.014 and when
U, = 50, the P-value is 0.009; since 49 < U, < 50, the P-value is between 0.009 and
0.014 and thus there is significant evidence for H 4. There is sufficient evidence to
conclude that soil respiration rates are different in the gap and growth areas. [

As Example 7.10.2 illustrates, Table 6 can be used to bracket the P-value for the
Wilcoxon-Mann-Whitney test just as Table 4 is used for the ¢ test. If the observed Uj
value is not given, then one simply locates the values that bracket the observed Uj.
One then brackets the P-value by the corresponding column headings.

Directionality For the  test, one determines the directionality of the data by seeing
whether Y, > Y, or Y| < Y,. Similarly, one can check directionality for the
Wilcoxon-Mann-Whitney test by comparing K; and K,: K; > K, indicates a trend
for the Y;’s to be larger than the Y,’s, while K; < K, indicates the opposite trend.
Often, however, this formal comparison is unnecessary; a glance at a graph of the
data is enough.

Directional Alternative If the alternative hypothesis H 4 is directional rather than
nondirectional, the Wilcoxon-Mann-Whitney procedure must be modified. As with
the ¢ test, the modified procedure has two steps and the second step involves halving
the nondirectional P-value to obtain the directional P-value.

Step1 Check directionality—see if the data deviate from H, in the direction
specified by H 4.
(a) If not,the P-value is greater than 0.50.
(b) If so, proceed to step 2.

Step 2 The P-value of the data is half as much as it would be if H, were
nondirectional.

To make a decision at a prespecified significance level «, one claims significant
evidence for H 4 if P-value = a.
The following example illustrates the two-step procedure.
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Figure 7.10.3 Three data
arrays for a Wilcoxon-
Mann-Whitney Test

Directional H; Suppose n = 8, n’ = 7, and H, is directional. Suppose further that
the data do deviate from H, in the direction specified by H 4. The values shown in
Table 7.10.3 can be used to find the P-value as follows:

If U, = 40, then P-value = 0.189/2 = 0.0945.

If U; = 46, then P-value = 0.054/2 = 0.027.

If U; = 49.5,then 0.009/2 < P-value < 0.014/2 s0 0.0045 < P-value < 0.007.

If U; = 50 (or larger), then P-value < 0.009/2 = 0.0045 . |

Rationale

Let us see why the Wilcoxon-Mann-Whitney test procedure makes sense. To take a
specific case, suppose the sample sizes are n; = 5 and n, = 4, so that there are
5 X 4 = 20 comparisons that can be made between a data point in the first sample
and a data point in the second sample. Thus, regardless of what the data look like, we
must have

The relative magnitudes of K; and K, indicate the amount of overlap of the Y;’s
and the Y,’s. Figure 7.10.3 shows how this works. For the data of Figure 7.10.3(a),
the two samples do not overlap at all; the data are /east compatible with H, and
show the strongest evidence for H, and thus U; has its maximum value, U; = 20.
Similarly, U; = 20 for Figure 7.10.3(b). On the other hand, the arrangement most
compatible with H, and shows a lack of evidence for H, is the one with maximal
overlap, shown in Figure 7.10.3(c); for this arrangement K; = 10, K, = 10, and
U; = 10.

Y,: . ° ° °

(C) Kl = 10, K2 =10

All other possible arrangements of the data lie somewhere between the three
arrangements shown in Figure 7.10.3; those with much overlap have U; close to 10,
and those with little overlap have U; closer to 20. Thus, large values of U; indicate
evidence for the research hypothesis, H 4, or equivalently the incompatibility of the
data with H,.



Figure 7.10.4 Null
distributions for the
Wilcoxon-Mann-Whitney
testwhenn = 5,n'" = 4.
(a) Null distribution of K
and K5; (b) Null
distribution of U,. Shading
corresponds to the P-value
when U; = 18.
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We now briefly consider the null distribution of U, and indicate how the critical
values of Table 6 were determined. (Recall from Section 7.10 that, for any statistical
test, the reference distribution for critical values is always the null distribution of the
test statistic—that is, its sampling distribution under the condition that Hj is true.)
To determine the null distribution of U, it is necessary to calculate the probabilities
associated with various arrangements of the data, assuming that all the Y’s were
actually drawn from the same population.* (The method for calculating the proba-
bilities is briefly described in Appendix 7.2.)

Figure 7.10.4(a) shows the null distribution of K; and K, for the case
n =5,n" = 4.For example, it can be shown that, if Hj is true, then

Pr{K, = 0, K, = 20} = 0.008

Probability
o o o
=) =) >
S kS
| | |

0.00 —

\
|
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| ‘ ‘ ||

[ [
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(®)

0.00 —

This is the first probability plotted in Figure 7.10.4(a). Note that Figure 7.10.4(a) is
roughly analogous to a ¢ distribution; large values of K (right tail) represent evi-
dence that the Y;’s tend to be larger than the Y>’s and large values of K, (left tail)
represent evidence that the Y,’s tend to be larger than the Y;’s.

Figure 7.10.4(b) shows the null distribution of Uy, which is derived directly from
the distribution in Figure 7.10.4(a). For instance, if H, is true, then

Pr{K, = 0, K, = 20} = 0.008

*In calculating the probabitities used in this section, it has been assumed that the chance of tied observations is
negligible. This will be true for a continuous variable that is measured with high precision. If the number of ties
is large, a correction can be made; see Noether (1967).%7
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and
Pr{K, = 20, K, = 0} = 0.008
so that
Pr{U; = 20} = 0.008 + 0.008 = 0.016

which is the rightmost probability plotted in Figure 7.10.4(b). Thus, both tails of the
K distribution have been “folded” into the upper tail of the U distribution; for
instance, the one-tailed shaded area in Figure 7.10.4(b) is equal to the two-tailed
shaded area in Figure 7.10.4(a).

P-values for the Wilcoxon-Mann-Whitney test are upper-tail areas in the U; dis-
tribution. For instance, it can be shown that the blue shaded area in Figure 7.10.4(b)
is equal to 0.064; this means that if H is true, then

Pr{U, = 18} = 0.064

Thus, a data set that yielded U; = 18 would have an associated P-value 0.064
(assuming a nondirectional H ).

The values in Table 6 have been determined from the null distribution of Us..
Because the U; distribution is discrete, only a few P-values are possible for any
given sample sizes n; and n,. Table 6 shows selected values of U, in bold type, with
the P-value given in italics. For example, if the sample sizes are 5 and 4, then a Uj
value of 17 gives a P-value of 0.111, a U, value of 18 gives a P-value of 0.064, and a
U, value of 19 gives a P-value of 0.032. Thus, to achieve statistical significance at the
a = 0.05 level requires a test statistic (U;) value of 19. The smallest possible P-value
when the sample sizes are 5 and 4 is 0.016, when U; = 20, which means that statisti-
cal significance at the & = 0.01 level cannot be obtained with a nondirectional test.

Conditions for Use of the Wilcoxon-Mann-Whitney Test

In order for the Wilcoxon-Mann-Whitney test to be applicable, it must be reason-
able to regard the data as random samples from their respective populations, with
the observations within each sample being independent, and the two samples being
independent of each other. Under these conditions, the Wilcoxon-Mann-Whitney
test is valid no matter what the form of the population distributions, provided that
the observed variable Y is continuous.”

The critical values given in Table 6 have been calculated assuming that ties do
not occur. If the data contain only a few ties, then the P-values are approximately
correct.*

The Wilcoxon-Mann-Whitney Test versus
the t Test and the Randomization Test
While the Wilcoxon-Mann-Whitney test and the ¢ test are aimed at answering the

same basic question— Are the locations of the two population distributions differ-
ent or does one population tend to have larger (or smaller) values than the other? —

*Actually, the Wilcoxon-Mann-Whitney test need not be restricted to continuous variables; it can be applied to
any ordinal variable. However, if Y is discrete or categorical, then the data may contain many ties, and the test
should not be used without appropriate modification of the critical values.
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they treat the data in very different ways. Unlike the ¢ test, the Wilcoxon-Mann-
Whitney test does not use the actual values of the Y’s but only their relative posi-
tions in a rank ordering. This is both a strength and a weakness of the
Wilcoxon-Mann-Whitney test. On the one hand, the test is distribution free because
the null distribution of Uj relates only to the various rankings of the Y’s, and there-
fore does not depend on the form of the population distribution. On the other hand,
the Wilcoxon-Mann-Whitney test can be inefficient: It can lack power because it
does not use all the information in the data. This inefficiency is especially evident for
small samples.

The randomization test is similar in spirit to the Wilcoxon-Mann-Whitney test
in that it does not depend on normality, yet the power of the randomization test is
often similar to that of the ¢ test. Conducting a randomization test can be difficult,
which is a primary reason that randomization tests were not more widely used until
computing power became more prevalent.

None of the competitors—the randomization test, the ¢ test, or the Wilcoxon-
Mann-Whitney test—is clearly superior to the others. If the population distribu-
tions are not approximately normal, the ¢ test may not even be valid. In addition,
the Wilcoxon-Mann-Whitney test can be much more powerful than the ¢ test, es-
pecially if the population distributions are highly skewed. If the population distri-
butions are approximately normal with equal standard deviations, then the ¢ test
is best, but its properties are similar to those of the randomization test. For mod-
erate sample sizes, the Wilcoxon-Mann-Whitney test can be nearly as powerful as
the ¢ test.>”

There is a confidence interval procedure for population medians that is associ-
ated with the Wilcoxon-Mann-Whitney test in the same way that the confidence
interval for (u; — w,) is associated with the ¢ test. The procedure is beyond the
scope of this book.

Exercises 7.10.1-7.10.9

7.10.1 Consider two samples of sizes n; = 5, n, = 7. Use
Table 6 to find the P-value, assuming that H 4 is nondirec-
tional and that

(a) Uy, =26
(b) U, = 30
(c) Uy =35

7.10.2 Consider two samples of sizes n; = 4, n, = 8. Use
Table 6 to find the P-value, assuming that H 4 is nondirec-
tional and that

(a) Uy =25
(b) Uy =31
(c) Uy =32

7.10.3 In a pharmacological study, researchers measured
the concentration of the brain chemical dopamine in six
rats exposed to toluene and six control rats. (This is the
same study described in Example 7.2.1.) The concentra-

tions in the striatum region of the brain were as shown in
the table.*

DOPAMINE (ng/gm)

TOLUENE CONTROL
3,420 1,820
2314 1,843
1,911 1,397
2,464 1,803
2,781 2,539
2,803 1,990

(a) Use a Wilcoxon-Mann-Whitney test to compare
the treatments at « = 0.05. Use a nondirectional
alternative.

(b) Proceed as in part (a), but let the alternative hypothesis
be that toluene increases dopamine concentration.
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7.10.4 In a study of hypnosis, breathing patterns were
observed in an experimental group of subjects and in a
control group. The measurements of total ventilation
(liters of air per minute per square meter of body area)
are shown.®’ (These are the same data that were summa-
rized in Exercise 7.5.6.) Use a Wilcoxon-Mann-Whitney
test to compare the two groups at @ = 0.10. Use a nondi-
rectional alternative.

EXPERIMENTAL CONTROL

532 4.50
5.60 4.78
5.74 4.79
6.06 4.86
6.32 541
6.34 5.70
6.79 6.08
7.18 6.21

7.10.5 In an experiment to compare the effects of two
different growing conditions on the heights of green-
house chrysanthemums, all plants grown under condition
1 were found to be taller than any of those grown under
condition 2 (that is, the two height distributions did not
overlap). Calculate the value of U and find the P-value if
the number of plants in each group was

(a) 3

(b) 4

(© 5

(Assume that H 4 is nondirectional.)

7.10.6 In a study of preening behavior in the fruitfly
Drosophila melanogaster, a single experimental fly was
observed for three minutes while in a chamber with 10
other flies of the same sex. The observer recorded the
timing of each episode (“bout”) of preening by the
experimental fly. This experiment was replicated 15 times
with male flies and 15 times with female flies (different
flies each time). One question of interest was whether
there is a sex difference in preening behavior. The
observed preening times (average time per bout, in
seconds) were as follows:®!

Male: 1.2, 1.2, 1.3, 1.9, 1.9, 2.0, 2.1, 2.2
22,23,23, 24, 27,29, 33

y=2127 s=05936

Female: 2.0, 2.2, 2.4, 2.4, 2.4, 2.8, 2.8, 2.8,
2.9, 3.2, 3.7, 4.0, 54, 10.7, 11.7

y = 4.093 s = 3.014

(a) For these data, the value of the Wilcoxon-Mann-
Whitney statistic is U; = 189.5. Use a Wilcoxon-
Mann-Whitney test to investigate the sex difference
in preening behavior. Let H, be nondirectional and
let« = 0.01.

(b) For these data, the standard error of (Y; — Y3) is
SE = 0.7933 sec. Use a ¢ test to investigate the sex
difference in preening behavior. Let H 4 be nondirec-
tional and let & = 0.01.

(c) What condition is required for the validity of the ¢
test but not for the Wilcoxon-Mann-Whitney test?
What feature or features of the data suggest that this
condition may not hold in this case?

(d) Verify the value of Uy given in part (a).

7.10.7 Substances to be tested for cancer-causing poten-
tial are often painted on the skin of mice. The question
arose whether mice might get an additional dose of the
substance by licking or biting their cagemates. To answer
this question, the compound benzo(a)pyrene was applied
to the backs of 10 mice: Five were individually housed
and 5 were group-housed in a single cage. After 48 hours,
the concentration of the compound in the stomach tissue
of each mouse was determined. The results (nmol/gm)
were as follows:%?

SINGLY HOUSED GROUP-HOUSED

33 39
2.4 4.1
2.5 4.8
33 39
2.4 3.4

(a) Use a Wilcoxon-Mann-Whitney test to compare the
two distributions at a = 0.01. Let the alternative
hypothesis be that benzo(a)pyrene concentrations
tend to be higher in group-housed mice than in
singly housed mice.

(b) Why is a directional alternative valid in this case?

7.10.8 Human beta-endorphin (HBE) is a hormone
secreted by the pituitary gland under conditions of stress.
An exercise physiologist measured the resting
(unstressed) blood concentration of HBE in two groups
of men: Group 1 consisted of 11 men who had been jog-
ging regularly for some time, and group 2 consisted of
15 men who had just entered a physical fitness program.
The results are given in the following table.®

FITNESS PROGRAM

JOGGERS ENTRANTS
39 40 32 60 70 47 54 27 31
19 52 41 32 42 37 41 9 18
13 37 28 33 23 49 41 59




Use a Wilcoxon-Mann-Whitney test to compare the
two distributions at « = 0.10. Use a nondirectional
alternative.

7.10.9 (Continuation of 7.10.8) Below are normal prob-
ability plots of the HBE data from Exercise 7.10.8.

(a) Using the plots to support your answer, is there evi-
dence of abnormality in either of the samples?

(b) Considering your answer to (a) and the preceding
plots, should we conclude that the data are indeed
normally distributed? Explain.
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(c) If the data are indeed normally distributed, explain
in the context of this problem what the drawback
would be with using the Wilcoxon-Mann-Whitney
test over the two-sample ¢ test to analyze these data.

(d) If the data are not normally distributed, explain in
the context of this problem what the drawback
would be with using the two-sample ¢ test over the
Wilcoxon-Mann-Whitney test to analyze this data.

(e) Considering your answers to the above, argue which
test should be used with these data. Note there is
more than one correct answer.

Joggers Fitness program
60 — . 70 — .
. 60 — .
50 — .
o 0 50 — o
@ 40 — o * Q o
jant ° T 40 — . oo
LN ] °
30 — o 30 — e
L]
20 — . 20 — .
10— o
I I I I I I I I I I
-2 -1 0 1 2 -2 -1 0 1 2

Normal score Normal score

7.11 Perspective

In this chapter we have discussed several techniques—confidence intervals and
hypothesis tests—for comparing two independent samples when the observed vari-
able is quantitative. In coming chapters we will introduce confidence interval and
hypothesis testing techniques that are applicable in various other situations. Before
proceeding, we pause to reconsider the methods of this chapter.

An Implicit Assumption

In discussing the tests of this chapter—the ¢ test and the Wilcoxon-Mann-Whitney
test—we have made an unspoken assumption, which we now bring to light. When
interpreting the comparison of two distributions, we have assumed that the relation-
ship between the two distributions is relatively simple —that if the distributions dif-
fer, then one of the two variables has a consistent tendency to be larger than the
other. For instance, suppose we are comparing the effects of two diets on the weight
gain of mice, with

Y; = Weight gain of mice on diet 1
Y, = Weight gain of mice on diet 2

Our implicit assumption has been that, if the two diets differ at all, then that dif-
ference is in a consistent direction for all individual mice. To appreciate the meaning



292 Chapter 7 Comparison of Two Independent Samples

Figure 7.11.1 Weight gain
distributions on two diets

of this assumption, suppose the two distributions are as pictured in Figure 7.11.1. In
this case, even though the mean weight gain is higher on diet 1, it would be an over-
simplification to say that mice tend to gain more weight on diet 1 than on diet 2;
apparently some mice gain less on diet 1. Paradoxical situations of this kind do
occasionally occur, and then the simple analysis typified by the ¢ test and the
Wilcoxon-Mann-Whitney test may be inadequate.

Distribution of Y,

/

Distribution of Y;

It is relatively easy to compare two distributions that have the same general
shape and similar standard deviations. However, if either the shapes or the SDs of
two distributions are very different from one another, then making a meaningful
comparison of the distributions is difficult. In particular, a comparison of the two
means might not be appropriate.

Which Method to Use When

If we are comparing samples from two normally distributed populations, a ¢ test can
be used to infer whether the population means differ and a confidence interval can
be used to estimate how much the two population means might differ, if at all. A
confidence interval generally provides more information than does a test, since the
test is restricted to a narrow question (“Might the difference between the sample be
reasonably attributed to chance?”), whereas the confidence interval addresses a
larger question (“How much larger is u; than u,?”).

Both the confidence interval and the ¢ test depend on the condition that the
populations are normally distributed. If this condition is not met, then a trans-
formation might be used to make the distributions approximately normal before
proceeding. If, despite considering transformations, the normality condition is ques-
tionable, then the Wilcoxon-Mann-Whitney test can be used. (Indeed, the Wilcoxon-
Mann-Whitney test can be used if the data are normal, although it is less powerful
than the ¢ test). When in doubt, a good piece of advice is to conduct both a ¢ test and
a Wilcoxon-Mann-Whitney test. If the two tests give similar, clear, conclusions
(i.e., if the P-values for the tests are similar and both are considerably larger than «
or both are considerably smaller than «), then we can feel comfortable with the con-
clusion. However, if one test yields a P-value somewhat larger than « and the other
gives a P-value smaller than «, then we might well declare that the tests are
inconclusive.

Sometimes an outlier will be present in a data set, calling into question the
result of a ¢ test. It is not legitimate to simply ignore the outlier. A sensible proce-
dure is to conduct the analysis with the outlier included and then delete the outlier
and repeat the analysis. If the conclusion is unchanged when the outlier is removed,
then we can feel confident that no single observation is having undue influence on
the inferences we draw from the data. If the conclusion changes when the outlier is
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removed, then we cannot be confident in the inferences we draw. For example, if the
P-value for a test is small with the outlier present but large when the outlier is delet-
ed, then we might state, “There is evidence that the populations differ from one
another, but this evidence is largely due to a single observation.” Such a statement
warns the reader that not too much should be read into any differences that were
observed between the samples.

Comparison of Variability

It sometimes happens that the variability of Y, rather than its average value, is of
primary interest. For instance, in comparing two different lab techniques for meas-
uring the concentration of an enzyme, a researcher might want primarily to know
whether one of the techniques is more precise than the other, that is, whether its
measurement error distribution has a smaller standard deviation. There are tech-
niques available for testing the hypothesis H(: oy = 0, and for using a confidence
interval to compare o and o,. Most of these techniques are very sensitive to the
condition that the underlying distributions are normal, which limits their use in
practice. The implementation of these techniques is beyond the scope of this book.

Supplementary Exercises 7.5.1-7.5.30

(Note: Exercises preceded by an asterisk refer to option-
al sections.)

Answers to hypothesis testing questions should in-
clude a statement of the conclusion in the context of the
setting. (See Examples 7.2.4 and 7.2.5.)

7.5.1 For each of the following pairs of samples, compute
the standard error of (Y| — Y,).

7.5.2 To investigate the relationship between intracellu-
lar calcium and blood pressure, researchers measured the
free calcium concentration in the blood platelets of 38
people with normal blood pressure and 45 people with
high blood pressure. The results are given in the table and
the distributions are shown in the boxplots.** Use the
test to compare the means. Let « = 0.01 and let H, be
nondirectional. [Note: Formula (6.7.1) yields 67.5 df.]

(a) SAMPLE | SAMPLE 2 PLATELET CALCIUM (nM)
BLOOD PRESSURE n MEAN SD
n 12 13
¥y 42 47 Normal 38 107.9 16.1
s 9.6 10.2 High 45 168.2 31.7
(b) SAMPLE | SAMPLE 2
n 22 19 ° Normal — I— —|
y o112 126 5
s 2.7 1.9 g
9
2
M . | |
High — I | oo . .
(c) SAMPLE | SAMPLE 2
n 5 7
y 14 16 1(|)0 1;0 2(I)O 2;0
SE 1.2 14

Platelet Ca (nM)
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7.5.3 Refer to Exercise 7.S.2. Construct a 95% confi-
dence interval for the difference between the population
means.

7.5.4 Refer to Exercise 7.5.2. The boxplot for the high
blood pressure group is skewed to the right and includes
outliers. Does this mean that the ¢ test is not valid for
these data? Why or why not?

7.5.5 In a study of methods of producing sheep’s milk for
use in cheese manufacture, ewes were randomly allocat-
ed to either a mechanical or a manual milking method.
The investigator suspected that the mechanical method
might irritate the udder and thus produce a higher
concentration of somatic cells in the milk. The accompa-
nying data show the average somatic cell count for each
animal.%

SOMATIC COUNT (1073 X cells/ml)

MECHANICAL MANUAL
MILKING MILKING
2,966 186
269 107
59 65
1,887 126
3,452 123
189 164
93 408
618 324
130 548
2,493 139
n 10 10
Mean 1,215.6 219.0
SD 1,342.9 156.2

(a) Do the data support the investigator’s suspicion?
Use a ¢ test against a directional alternative at
a = 0.05. The standard error of (Y, —Y,) is
SE = 427.54 and formula (6.7.1) yields 9.2 df.

(b) Do the data support the investigator’s suspicion?
Use a Wilcoxon-Mann-Whitney test against a direc-
tional alternative at a« = 0.05. (The value of the
Wilcoxon-Mann-Whitney statistic is Uy = 69.) Com-
pare with the result of part (a).

(c) What condition is required for the validity of the ¢
test but not for the Wilcoxon-Mann-Whitney test?
What features of the data cast doubt on this
condition?

(d) Verify the value of U, given in part (b).

7.5.6 A plant physiologist conducted an experiment to
determine whether mechanical stress can retard the
growth of soybean plants. Young plants were randomly
allocated to two groups of 13 plants each. Plants in one
group were mechanically agitated by shaking for 20 min-
utes twice daily, while plants in the other group were not
agitated. After 16 days of growth, the total stem length
(cm) of each plant was measured, with the results given in
the accompanying table.%

Use a ¢ test to compare the treatments at o = 0.01. Let
the alternative hypothesis be that stress tends to retard
growth. [Note: Formula (6.7.1) yields 23 df.]

CONTROL  STRESS
no 13 13

y 3059 27.78
s 2.13 1.73

7.5.7 Refer to Exercise 7.S.6. Construct a 95% confi-
dence interval for the population mean reduction in stem
length. Does the confidence interval indicate whether the
effect of stress is “horticulturally important,” if “horticul-
turally important” is defined as a reduction in population
mean stem length of at least

(a) 1cm
(b) 2cm
(¢) 5cm

7.5.8 Refer to Exercise 7.S.6. The observations (cm), in
increasing order, are shown. Compare the treatments
using a Wilcoxon-Mann-Whitney test at « = 0.01. Let the
alternative hypothesis be that stress tends to retard
growth.

CONTROL  STRESS
252 24.7
29.5 25.7
30.1 26.5
30.1 27.0
30.2 27.1
30.2 272
30.3 27.3
30.6 27.7
31.1 28.7
31.2 28.9
31.4 29.7
335 30.0
34.3 30.6




7.5.9 One measure of the impact of pollution along a
river is the diversity of species in the river floodplain. In
one study, two rivers, the Black River and the Vermilion
River, were compared. Random 50-m X 20-m plots were
sampled along each river and the number of species of
trees in each plot was recorded. The following table con-
tains the data.?’

VERMILION RIVER BLACK RIVER

9 916 13 12 13106 9
131313 8 11 10 7 6 18
9 910 6

The Black River was considered to have been polluted
quite a bit more than the Vermilion River, and this was
expected to lead to lower biodiversity along the Black
River. Conduct a Wilcoxon-Mann-Whitney test, with
a = 0.10, of the null hypothesis that the populations
from which the two samples were drawn have the same
biodiversity (distribution of tree species per plot) versus
an appropriate directional alternative.

7.5.10 A developmental biologist removed the oocytes
(developing egg cells) from the ovaries of 24 frogs
(Xenopus laevis). For each frog the oocyte pH was deter-
mined. In addition, each frog was classified according to
its response to a certain stimulus with the hormone prog-
esterone. The pH values were as follows:*

Positive response:

7.06, 7.18, 7.30, 7.30, 7.31, 7.32, 7.33, 7.34, 7.36, 7.36,
7.40,7.41,7.43,7.48,7.49,7.53,7.55,7.57

No response:
7.55,7.70,7.73,7.75,7.75,7.77

Investigate the relationship of oocyte pH to progesterone
response using a Wilcoxon-Mann-Whitney test at
a = 0.05. Use a nondirectional alternative.

7S.11 Refer to Exercise 7.S.10. Summary statistics for
the pH measurements are given in the following table.
Investigate the relationship of oocyte pH to progesterone
response using a ¢ test at & = 0.05. Use a nondirectional
alternative. [Note: Formula (6.7.1) yields 14.1 df.]

POSITIVE RESPONSE ~ NO RESPONSE

n 18 6
y 7.373 7.708
s 0.129 0.081

7.5.12 A proposed new diet for beef cattle is less expen-
sive than the standard diet. The proponents of the new
diet have conducted a comparative study in which one
group of cattle was fed the new diet and another group
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was fed the standard. They found that the mean weight
gains in the two groups were not statistically significantly
different at the 5% significance level, and they stated that
this finding supported the claim that the new cheaper
diet was as good (for weight gain) as the standard diet.
Criticize this statement.

*7.8.13 Refer to Exercise 7.S.12. Suppose you discover
that the study used 25 animals on each of the two diets,
and that the coefficient of variation of weight gain under
the conditions of the study was about 20%. Using this
additional information, write an expanded criticism of
the proponents’ claim, indicating how likely such a study
would be to detect a 10% deficiency in weight gain on the
cheaper diet (using a two-tailed test at the 5% signifi-
cance level).

75.14 In a study of hearing loss, endolymphatic sac
tumors (ELSTs) were discovered in 13 patients. These 13
patients had a total of 15 tumors (i.e., more patients had a
single tumor, but two of the patients had 2 tumors each).
Ten of the tumors were associated with the loss of func-
tional hearing in an ear, but for 5 of the ears with tumors
the patient had no hearing loss.”” A natural question is
whether hearing loss is more likely with large tumors
than with small tumors. Thus, the sizes of the tumors were
measured. Suppose that the sample means and standard
deviations were given and that a comparison of average
tumor size (hearing loss versus no hearing loss) was being
considered.
(a) Explain why a ¢ test to compare average tumor size is
not appropriate here.
(b) If the raw data were given, could a Wilcoxon-Mann-
Whitney test be used?

7.5.15 (Computer exercise) In an investigation of the
possible influence of dietary chromium on diabetic symp-
toms, 14 rats were fed a low-chromium diet and 10 were
fed a normal diet. One response variable was activity of
the liver enzyme GITH, which was measured using a
radioactively labeled molecule. The accompanying table
shows the results, expressed as thousands of counts per
minute per gram of liver.”” Use a ¢ test to compare the
diets at o = 0.05. Use a nondirectional alternative. [Note:
Formula (6.7.1) yields 21.9 df.]

LOW-CHROMIUM

DIET NORMAL DIET
423 52.8 53.1 53.6
51.5 51.3 50.7 47.8
53.7 58.5 55.8 61.8
48.0 55.4 551 52.6
56.0 383 47.5 53.7
55.7 54.1
54.8 52.1
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7.5.16 (Computer exercise) Refer to Exercise 7.S.15. Use
a Wilcoxon-Mann-Whitney test to compare the diets at
a = 0.05. Use a nondirectional alternative.

7.5.17 (Computer exercise) Refer to Exercise 7.S.15.

(a) Construct a 95% confidence interval for the differ-
ence in population means.

(b) Suppose the investigators believe that the effect of
the low-chromium diet is “unimportant” if it shifts
mean GITH activity by less than 15% —that is, if the
population mean difference is less than about 8 thou-
sand cpm/gm. According to the confidence interval
of part (a), do the data support the conclusion that
the difference is “unimportant”?

(c) How would you answer the question in part (b) if the
criterion were 4 thousand rather than 8 thousand
cpm/gm?

75.18 (Computer exercise) In a study of the lizard
Scelopons occidentalis, researchers examined field-
caught lizards for infection by the malarial parasite
Plasmodium. To help assess the ecological impact of
malarial infection, the researchers tested 15 infected and
15 noninfected lizards for stamina, as indicated by the
distance each animal could run in two minutes. The dis-
tances (meters) are shown in the table.”!

INFECTED ANIMALS | UNINFECTED ANIMALS
16.4 36.7 222 18.4
294 28.7 34.8 27.5
37.1 30.2 421 455
23.0 21.8 32.9 34.0
24.1 371 26.4 45.5
245 20.3 30.6 245
16.4 283 32.9 28.7
29.1 37.5

Do the data provide evidence that the infection is associ-
ated with decreased stamina? Investigate this question
using

(a) at test.

(b) a Wilcoxon-Mann-Whitney test.

Let H 4, be directional and a = 0.05.

7.5.19 In a study of the effect of amphetamine on water
consumption, a pharmacologist injected four rats with
amphetamine and four with saline as controls. She meas-
ured the amount of water each rat consumed in 24 hours.
The following are the results, expressed as ml water per
kg body weight:”?

AMPHETAMINE  CONTROL
1184 122.9
124.4 162.1
169.4 184.1
105.3 154.9

(a) Use a ¢ test to compare the treatments at « = 0.10.
Let the alternative hypothesis be that amphetamine
tends to suppress water consumption.

(b) Use a Wilcoxon-Mann-Whitney test to compare the
treatments at o = 0.10, with the directional alterna-
tive that amphetamine tends to suppress water
consumption.

(c) Why is it important that some of the rats received
saline injections as a control? That is, why didn’t the
researchers simply compare rats receiving ampheta-
mine injections to rats receiving no injection?

7.5.20 Nitric oxide is sometimes given to newborns who
experience respiratory failure. In one experiment, nitric
oxide was given to 114 infants. This group was compared
to a control group of 121 infants. The length of hospital-
ization (in days) was recorded for each of the 235 infants.
The mean in the nitric oxide sample was y; = 36.4; the
mean in the control sample was y, = 29.5. A 95% confi-
dence interval for u; — u, is (2.3, 16.1), where u; is the
population mean length of hospitalization for infants
who get nitric oxide and u, is the mean length of hospi-
talization for infants in the control population.”® For each
of the following, say whether the statement is true or
false and say why.

(a) We are 95% confident that u, is greater than u,,
since most of the confidence interval is greater than
zero.

(b) We are 95% confident that the difference between
nq and p, is between —2.3 days and 16.1 days.

(c) We are 95% confident that the difference between y;
and y, is between —2.3 days and 16.1 days.

(d) 95% of the nitric oxide infants were hospitalized
longer than the average control infant.

7.5.21 Consider the confidence interval for u; — u, from
Exercise 7.8.20: (2.3, 16.1). True or false: If we tested
Hy g = n, against H 4y # w,, using a = 0.05, we
would reject H.

7.5.22 Researchers studied subjects who had pneumonia
and classified them as being in one of two groups: those
who were given medical therapy that is consistent with
American Thoracic Society (ATS) guidelines and those
who were given medical therapy that is inconsistent with
ATS guidelines. Subjects in the “consistent” group were
generally able to return to work sooner than were sub-
jects in the “inconsistent” group. A Wilcoxon-Mann-



Whitney test was applied to the data; the P-value for the
test was 0.04.7% For each of the following, say whether the
statement is true or false and say why.

(a) There is a 4% chance that the “consistent” and
“inconsistent” population distributions really are the
same.

(b) If the “consistent” and “inconsistent” population dis-
tributions really are the same, then a difference
between the two samples as large as the difference
that these researchers observed would only happen
4% of the time.

(c) If a new study were done that compared the “consis-
tent” and “inconsistent” populations, there is a 4%
probability that H, would be rejected again.

7.5.23 A student recorded the number of calories in each
of 56 entrees—28 vegetarian and 28 nonvegetarian—
served at a college dining hall.” The following table sum-
marizes the data. Graphs of the data (not given here)
show that both distributions are reasonably symmetric
and bell shaped. A 95% confidence interval for pu; — u,
is (—27, 85). For each of the following, say whether the
statement is true or false and say why.

n MEAN SD
Vegetarian 28 351 119
Nonvegetarian 28 322 87

(a) 95% of the data are between —27 and 85 calories.
(b) We are 95% confident that u; —
and 85 calories.

(¢) 95% of the time Y; — Y, will be between —27 and
85 calories.

MUy is between —27

(d) 95% of the vegetarian entrees have between 27
fewer calories and 85 more calories than the average
nonvegetarian entree.

7.5.24 Refer to Exercise 7.5.23. True or false (and say
why): 95% of the time, when conducting a study of this
size, the difference in sample means (Y, — Y,) will be

(85 — (=27))
2

within approximately = 56 calories of the

difference in population means (u; — w).

7.5.25 (Computer exercise) Lianas are woody vines that
grow in tropical forests. Researchers measured liana
abundance (stems/ha) in several plots in the central
Amazon region of Brazil. The plots were classified into
two types: plots that were near the edge of the forest (less
than 100 meters from the edge) or plots far from the edge
of the forest. The raw data are given and are summarized
in the table.”
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n MEAN SD
Near 34 438 125
Far 34 368 114

NEAR FAR
639 601 600 470 339 384
605 581 555 309 395 393
535 531 466 236 252 407
437 423 380 241 215 427
376 362 350 320 228 445
349 346 337 325 267 451
320 317 310 352 294 493
285 271 265 275 356 502
250 450 441 181 418 540
436 432 420 250 425 590
419 407 266 495
702 676 338 648

(a) Make normal probability plots of the data to confirm
that the distributions are mildly skewed.

(b) Conduct a ¢ test to compare the two types of plots at
a = 0.05. Use a nondirectional alternative.

(c) Apply a logarithm transformation to the data and
repeat parts (a) and (b).

(d) Compare the ¢ tests from parts (b) and (c). What do
these results indicate about the effect on a ¢ test of
mild skewness when the sample sizes are fairly
large?

7.5.26 Androstenedione (andro) is a steroid that is
thought by some athletes to increase strength. Re-
searchers investigated this claim by giving andro to one
group of men and a placebo to a control group of men.
One of the variables measured in the experiment was the
increase in “lat pulldown” strength (in pounds) of each
subject after four weeks. (A lat pulldown is a type of
weightlifting exercise.) The raw data are given below and
are summarized in the table.”’

n MEAN SD
Control 9 14.4 13.3
Andro 10 20.0 12.5

CONTROL ANDRO
30 10 10 30 0 10 0 10
40 20 30 20 10 40 20 10
10 0 30
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(a) Conduct a ¢ test to compare the two groups at
a = 0.10. Use a nondirectional alternative. [Note:
Formula (6.7.1) yields 16.5 df.]

(b) Prior to the study it was expected that andro would
increase strength, which means that a directional al-
ternative might have been used. Redo the analysis in
part (a) using the appropriate directional alternative.

7.5.27 The following is a sample of computer output
from a study.”® Describe the problem and the conclusion,
based on the computer output.

Y = number of drinks in the previous 7 days

Two-sample T for treatment vs. control:

n Mean SD
Treatment 244 13.62 12.39
Control 238 16.86 13.49

95% CI for mul — mu2:(-5.56, — 0.92)

T-test mul = mu2 (vs <):
T=-2.74 P=.0031 DF = 474.3

7.5.28 In a controversial study to determine the effec-
tiveness of AZT, a group of HIV-positive pregnant
women were randomly assigned to get either AZT or a
placebo. Some of the babies born to these women were
HIV-positive, while others were not.”

(a) What is the explanatory variable?
(b) What is the response variable?
(c) What are the experimental units?

7.5.29 Patients suffering from acute respiratory failure
were randomly assigned to either be placed in a prone
(face down) position or a supine (face up) position. In the
prone group, 21 out of 152 patients died. In the supine
group, 25 out of 152 patients died.%

(a) What is the explanatory variable?
(b) What is the response variable?
(c) What are the experimental units?

7.5.30 A study of postmenopausal women on hormone
replacement therapy (H.R.T.) reported that they had a
reduced heart attack rate, but had even greater reduc-
tions in death from homicide and accidents—two causes
of death that cannot be linked to H.R.T. It seems that the
women on H.R.T. differ from others in many other as-
pects of their lives—for instance, they exercise more; they
also tend to be wealthier and to be better educated.?! Use
the language of statistics to discuss what these data say
about the relationships between H.R.T., heart attack risk,
and variables such as exercise, wealth, and education. Use
a schematic diagram similar to Figure 7.4.1 or Figure 7.4.2
to support your explanation.



